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Abstract Glioma is the most common lethal tumor of the human brain. The median survival of patients with
primary World Health Organization grade IV glioma is only 14.6 months. The World Health Organization
classification of tumors of the central nervous system categorized gliomas into lower-grade gliomas and
glioblastomas. Unlike primary glioblastoma that usually develop de novo in the elderly, secondary glioblastoma
enriched with an isocitrate dehydrogenase mutant typically progresses from lower-grade glioma within 5–10 years
from the time of diagnosis. Based on various evolutional trajectories brought on by clonal and subclonal
alterations, the evolution patterns of glioma vary according to different theories. Some important features
distinguish the normal brain from other tissues, e.g., the composition of the microenvironment around the tumor
cells, the presence of the blood-brain barrier, and others. The underlying mechanism of glioma recurrence and
evolution patterns of glioma are different from those of other types of cancer. Several studies correlated tumor
recurrence with tumor heterogeneity and the immune microenvironment. However, the detailed reasons for the
progression and recurrence of glioma remain controversial. In this review, we introduce the different mechanisms
involved in glioma progression, including tumor heterogeneity, the tumor microenvironment and drug resistance,
and their pre-clinical implements in clinical trials. This review aimed to provide new insights into further clinical
strategies for the treatment of patients with recurrent and secondary glioma.
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Introduction

Glioma is the most common and aggressive brain cancer in
adults and can be classified as grades I–IV based on
histological features [1–3]. According to the clinical
course, glioblastoma multiforme (GBM), which is referred
to as grade IV glioma, can generally be classified into two
subtypes [4]. Primary GBM refers to the vast majority of
GBMs considered to form de novo in the elderly.
Secondary GBMs (sGBMs) typically progress from
lower-grade tumors and affect younger patients [5].

Recurrence of lower-grade glioma (LGG) and other tumors
appears to be unavoidable despite considerable research
performed in this field using various technologies in the
last decades. Many extracellular tumor microenvironment
(ETM) cell types are prevalent in brain tumors, but some
important features that distinguish the normal brain from
other tissues exist, including the composition of the ETM
(e.g., microglia, astrocytes, and neurons), blood-brain
barrier, and a previously “immune privileged” organs
consideration in the human brain. Moreover, the skull
provides a physical barrier to the swelling that often occurs
following inflammatory reactions. Thus, interactions with
the ETM require regulation within the brain. Hence, the
mechanism underlying glioma recurrence and the evolu-
tion patterns of glioma remain controversial.
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Studies have revealed individual and spatiotemporal
evolution patterns of the primary GBM genome [6,7] and
have identified key genomic events and subgroup altera-
tions during the progression of glioma [8–11]. Few
researchers have systematically reviewed the mechanisms
and patterns that occur in the progression and recurrence of
glioma [12]. Moreover, few reviews have discussed the
differences in intratumor heterogeneity (ITH), microenvir-
onment, and differences in the mechanisms underlying
drug resistance between glioma and other types of tumors.
We reviewed the currently available literature on the

mechanisms of glioma progression, including tumor
heterogeneity, ETM, and drug resistance. We described
some evolutional patterns during the development and
progression of glioma, to provide new insights into further
strategies for the treatment of patients with recurrent or
secondary glioma.

Gradualism and punctuated evolution of
cancer

Approximately half of the mutations, e.g., driver mutations
in tumor protein p53 (TP53), BRAF, and ATRX, identified
in the initial tumor of LGG are no longer detectable at the
time of recurrence. This phenomenon indicates that
recurrent tumors are often seeded from heterogenetic
cells derived from ancestors at early stages [9,11]. The
long-standing debate on the evolution of cancer has
focused on whether tumors evolve gradually through the
sequential accumulation of alterations during clonal
expansions or are characterized by punctuated progression
[13]. The gradual evolution hypothesis is supported by the
presence of clock-like alteration signatures observed in
patients [14]. Different patterns of cancer evolution have
been described in various cancer types. Evidence for the
selection of driver events in cancer development and
therapeutic pressure is currently limited. Therefore, ITH in
the development of colorectal carcinoma can follow the
laws of neutral growth after a “big bang” of diversity early
events in its evolution [15]. Another evolution pattern
known as punctuated or parallel evolution is described as
an independent pattern of similar evolution characteriza-
tion initiating from a single ancestral clone [16]. Clone
cells harboring mutations did not expand, despite the
proliferative phenotype typically conferred by this muta-
tion in the recurrence of other cancer types [17,18]. This
finding indicated the ineffectiveness of sequential mono-
therapy.
Similarly, glioma contains various heterogenetic tumor

clones and evolutionary patterns. Multiregional biopsy and
spatiotemporal genomic architectural study may provide
information regarding the clonal evolution from initial
glioma to recurrence [11,13,19]. Samples from the same
tumor mass were determined to have shared genomic and

expression patterns using bulk and single-cell data of 127
samples obtained from 53 patients. In contrast, multi-
regional, separately localized tumors, or long-term recur-
rent GBMs are seeded from different clones at an early
stage [19]. Strikingly, more complex clonal evolution was
found in recurrent GBM. Alternative models for the
branching pattern are also proposed, in which the recurrent
samples are seeded from a lineage nested within the tumor,
perhaps selected by therapy [11,19]. Model I could be
described as a clonal mutation in the initial sample and
absent in recurrence, whereas model II could be described
as a subclonal mutation in the initial sample and clonal in
recurrence (Fig. 1A). Bao et al. showed that the PTPRZ1-
MET (ZM) fusion was enriched in patients with sGBM
[20] and subsequently found that MET exon 14 skipping
(METex14) accompanied by ZM fusion promoted malig-
nant phenotypes of glioma. The subclonal level of
METex14 in initial tumors was associated with poorer
overall survival than that reported in METex14-negative
patients [21], indicating the model II evolution pattern in
sGBM patients with MET alterations. A chemical screen-
ing of patient-derived glioma cells showed that therapeutic
response was associated with genetic similarity [19].
Owing to the presence of the linear evolution mode in
these tumor cells, local recurrent tumors respond well to
targeted treatment. However, multifocal GBMs develop
through parallel evolution [22]. The branching evolution
pattern and estimates of evolutionary rate suggest that the
relapse-related clones typically existed years before the
diagnosis [11]. The recent glioma evolutional study
“GLASS” demonstrated that the clonal architecture of
each tumor remained similar, whereas the presence of
subclonal selection was associated with the clinical
outcome [12]. The evolution pattern in the landscape of
driver clones was correlated with the distant appearance of
a recurrent tumor from the initial tumor [7]. This
phenomenon indicated the misleading therapy involving
the targeting of the genomic profile of the initial tumor for
the distally recurring tumors.
Various pathways are involved in the evolution of GBM.

Genetic alterations of the p53 pathway were identified as
primary molecular markers with a high number of
subclonal alterations in GBM [6]. Among recurrent
GBMs, 11% of tumors harbor mutations in latent
transforming growth factor β binding protein 4 (LTBP4),
which encodes a protein that binds to the transforming
growth factor β (TGF-β). Inhibition of LTBP4 in GBM
cells restrains the TGF-β pathway and decreases cell
proliferation, highlighting the function of this pathway as a
potential predictive marker in GBM [11]. Other genetic
alterations, including ETS variant transcription factor 1
(ETV1), cyclin dependent kinase 6 (CDK6), NF-κB
(complex), interleukin 1B (IL1B), IL6, AKT, and vascular
endothelial growth factor (VEGF) were identified as
candidate genes and potential signaling regulators of
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chromosome gain or loss in recurrent GBM [23]. These
findings are consistent with those generally observed in
GBM samples in comparison with normal brain tissue.
Mazor et al. investigated the function of isocitrate

dehydrogenase (IDH) mutation from LGG in recurrence
and discovered that deletion of IDH1 was followed by
clonal evolution and recurrence at a higher grade. Deletion
of IDH1 leads to decreased concentration of 2-hydro-
xyglutarate, maintenance of the glioma CpG island

methylator phenotype, and DNA methylation reprogram-
ming outside CGI. This finding indicates that in some
patients, mutant IDH1 and 2-hydroxyglutarate are not
required for recurrence despite the initiation of gliomagen-
esis through the mutation of IDH1 [24]. Interestingly,
genes transcriptionally dysregulated through promoter
methylation and enriched in cell cycle pathways were
associated with malignant progression to high-grade
gliomas [24].

Fig. 1 Mechanisms of glioma progression. (A) Patterns of glioma evolution. Model I: both samples are monophyletic (“branching
evolution”) due to founder clonal genetic alterations. Model II: recurrence monophyletic, nested within tumors owing to the subclonal
genetic alterations. Red circles indicate the founder clone, whereas multicolor circles indicate subclones. Circles indicate the time point of
diagnosis of primary and recurrent glioma. (B) Heterogeneity in glioma. (C) Microenvironment of glioma. (D) Drug resistance in glioma.
All cell types are listed at the bottom of the figure.
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Mechanisms of glioma recurrence and
malignant progression

Hanahan and Weinberg reviewed the different ways of
activating cancer invasion and metastasis [25], including
the epithelial-mesenchymal transition program, heteroty-
pic contributions of stromal cells, plasticity, and the
daunting complexity of metastatic colonization. In glioma,
PTEN and p53 alterations [26], IDH [27] and ATRX [28]
mutations, and telomerase reverse transcriptase promoter
mutation [29] lead to the initiation of glioma and impact
the overall survival time. However, the underlying
mechanism of these alterations and other factors involved
in glioma progression and recurrence remain unknown.
ITH with genomic instability and hyper-mutation, the
ETM (consisting of immune inflammatory cells, cancer
stem cells (CSCs), endothelial cells, pericytes, cancer-
associated fibroblasts (CAFs), and progenitor cells of the
tumor stroma), and metabolic deregulation have recently
been found as enabling and emerging characteristics of
cancer pathogenesis and neoplastic proliferation.

ITH

ITH has been identified since the 1800s [30]. It is
recognized as a key reason for therapeutic failure, drug
resistance, and tumor progression [31,32]. However, ITH
had not been distinctly elucidated until the development of
advanced technology, such as next-generation sequencing.
Through this approach (occasionally single-cell sequen-
cing), studies demonstrated that distinct subpopulations
cooperate to promote tumor maintenance, growth, and
progression [33–36].
A recent study regarding LGG [9,24], GBM [7,37], and

other tumor types [23,38] demonstrated the presence of
different subclonal alterations between initial and recurrent
tumors. The biological process and treatment implications
of ITH have been recently reviewed. Divergent extents of
ITH have been found in brain tumors, including diffuse
intrinsic neuroblastoma [39], pontine glioma [40], LGG
[9], and GBM [7,11]. The characteristics of heterogeneity
in GBM have recently been identified. As implied by the
term “multiforme,” ITH at a high level exists in this type of
brain tumor [41]. Primary GBM samples showed strong
association with classical and mesenchymal subtypes, as
shown by RNA sequencing, thereby confirming the
heterogeneity in GBM [22]. Analysis of copy number
profiles revealed a high degree of genetic instability among
different tumor cells with a high level of heterogeneity.
This phenomenon indicated that genomic instability and
ITH increase as GBM cells increase in tumorigenicity [23].
ITH is relatively well recognized in GBM [42]. However,
fluorescence in situ hybridization [43], multi-region
sequencing [9,44], and single-cell sequencing [45,46]

revealed a more detailed characterization of LGG hetero-
geneity. IDH1 mutation occurs early in the course of LGG
followed by deletion or amplification after tumor progres-
sion and clonal expansion at a higher grade [10]. As
genome doubling and ongoing dynamic chromosomal
instability are associated with ITH as an early event [47],
further investigation should be performed regarding the
correlation between ITH and IDH mutation. DNA
methylation loss is identified during progression from
LGG to high-grade glioma because of heterogeneity of the
initial tumor [24]. However, ITH could not explain the
majority of genetic alterations between the initial and
progression tumors [9]. Geographic heterogeneity of the
tumor is not responsible for the genomic divergence in
distant recurrence samples [24]. Furthermore, intraGBM
heterogeneity does not explain the large number of
alterations uniquely detected in initial and recurrent tumors
[6].
Future molecular targeted therapies should focus on at

least four types of cancer cells based on their different
properties and response to treatment, namely, primary
glioma stem cells (GSCs), recurrence-initiating stem-like
cancer cells, proliferating cells, and non-GSCs, as
suggested by some researchers [48]. Inhibitors of the
Wnt, sonic hedgehog signaling molecule (SHH), and
Notch pathway are good candidate therapies for GSCs
[8,49]. Targeting of adaptive resistance mechanisms and
blocking of immune suppression can be accomplished by
eliminating the populations of recurrence-initiating stem-
like cancer cells [6,50], as shown in Fig. 1B.

ETM influences tumor progression

Multiple extracellular stromal cells converge to support the
tumorigenic process by sustaining cell growth, invasion,
and metastasis, leading to the following: inhibition of B
and T cell responses, the recruitment of tumor-associated
macrophages (TAMs), and the influence of CAFs. Unlike
tumor cells, stromal cells within the ETM are genetically
stable and thus become potential therapeutic targets with
reduced risk of resistance and tumor relapse [51].
Interestingly, initial tumors with diverse recurrent poten-
tials differ in their composition of both tumor- and stroma-
derived ETM components [52]. Furthermore, the composi-
tion of the ETM is associated with clinical prognosis.
Another predominant factor in ETM associated with

tumor progression is angiogenesis, which initiated a
paradigm shift in cancer evolution [53,54]. Tumor
vascularization requires the mutual interaction among
multiple ETM cell types, such as TAMs, mesenchymal
stem cells, and CAFs, whose phenotype is often regulated
by hypoxia [55–57], as shown in Fig. 1C. Studies reported
the effect of CAFs on the migration of glioma cells through
their angiogenesis activity [58] or similar functional
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properties between CAFs and GBM stromal cells [59]. The
role of CAFs in the malignant development of glioma
needs further investigation.
In glioma, ETM is correlated with transcriptomic

subtype multiplicity and ITH, which are involved in
glioma cell clone expansion. Macrophages/microglia,
CD4+ T lymphocytes, and neutrophils have been identified
in the glioma microenvironment through in silico cell
sorting. Deficiency of the neurofibromin 1 (NF1) gene
leads to increased TAM infiltration and reveals a decrease
in invading monocytes with a subtype-dependent increase
in macrophages cells at recurrence. CD8+ T cell enrich-
ment was further associated with hypermutation at
diagnosis or recurrence [60]. These findings demonstrate
that the microenvironment can normalize intrinsic tumor
cells and re-regulate stromal cells. Therefore, targeting of
the microenvironment rather than targeted ablation of
tumor cells may be a more effective option for cancer
treatment.
Further emerging examples of ETM-directed therapies

neutralize tumor-associated chronic inflammation rather
than targeting microenvironment cells. A colony stimulat-
ing factor 1 receptor (CSF-1R) inhibitor was recently used
to target macrophages and microglia in the ETM of
gliomas [61]. A patient with recurrent multifocal GBM
received chimeric antigen receptor–engineered T cells
targeting the tumor-associated antigen interleukin-13
receptor α 2 (IL13Rα2). Following chimeric antigen
receptor T cell therapy, a decrease in all intracranial and
spinal tumors was observed along with symptom relief and
prolonged survival time [62].

Drug resistance and tumor relapse

Heterogeneity is associated with endogenous drug resis-
tance in tumors. Heterogeneity-induced resistance can
arise through two main mechanisms, namely, (1) pre-
existing therapy-resistant clones prior to treatment and
(2) de novo alterations acquired after treatment. Even with
the most effective treatment, most patients exhibit
incomplete drug response. Moreover, the residual tumor
bulk commonly contains a small population of quiescent
drug-resistant clones that survive the therapy due to
alternative metabolic and epigenetic pathways [63–67].
Acquired drug resistance is often attributed to the selective
expansion of pre-existing therapy-resistant subclones.
However, some preclinical studies revealed de novo
alterations of resistance alterations, which lead to the
evolution of drug-tolerant cells [68,69]. Although these
resistance alterations are often referred to as “acquired,”
several studies identified de novo resistance alterations that
are present at low frequencies in pretreated tumor tissues
[70,71]. Bulk and single-cell sequencing demonstrated
acquired malignant phenotypes after targeted therapy,

including enhanced mesenchymal and growth factor
signaling and decreased antigen presentation pathway,
which may enable immune check-point avoidance. Some
of the pre-existing subclones in pretreatment specimens
with these phenotypes become dominant after chemother-
apy, indicating the selection pressure for these resistance
phenotypes [72].
Stem cells are responsible for the endogenous induce-

ment of tumor progression. These cells are undifferentiated
biological cells, which is a definition that is based on their
capacity for long-term self-renewal to differentiate into
multiple cell lineages. In numerous adult tumor tissues,
stem cells (referred to as CSCs) are responsible for tumor
homeostasis and regeneration [73]. CSC populations
contribute to the occurrence of drug resistance through a
variety of mechanisms, including self-renewal, quiescence
maintenance, survival ability, and drug efflux [74]. Each
category reflects specific CSC characteristics and provides
anti-CSC strategies in the treatment of advanced cancers.
In tumors constructed with CSCs and non-CSCs, the
sensitivity of CSCs to chemotherapy inhibits tumor growth
regardless of the remaining non-CSCs, inducing tumor
regression. In case of non-CSC elimination, CSCs sustain
tumor growth, inducing tumor relapse. The capacities to
maintain tumor propagation, induce inherent resistance to
clinical therapy, and contribute to tumor progression are
fundamental properties of CSCs. Stem cells are located
within the subventricular zone and express stem cell
marker nestin in normal brain [75]. GSCs are identified in
glioma tissue. Treatment with the standard drug temozo-
lomide (TMZ) preferentially targets rapidly cycling tumor
cells, whereas nestin-positive CSCs re-enter and retard the
cell cycle after TMZ administration, thereby contributing
to tumor relapse [76]. Resistant CSCs can be either
intrinsically resistant to therapy (e.g., resistance to DNA
damage and expression of multidrug resistance) or
extrinsically instructed by the ETM (e.g., immune evasion,
autophagy, and TAMs). Researchers demonstrated
enriched CSCs following chemotherapy or radiotherapy,
indicating the therapy-induced selection of cancer cells
with CSC properties. Radiation induces high expression of
CD133+ CSCs in GBM xenografts [77]. Epithelial-
mesenchymal transition and CSC properties have been
identified in GBM cell lines that acquired resistance to the
anti-VEGFA bevacizumab [78]. In GBM, lineage-sorting
experiments suggested that TMZ resistance is accompa-
nied by the expansion of the CSC subclone [79].
Accordingly, targeting CSCs/GSCs necessitates a compre-
hensive elucidation of the mechanisms that lead to
resistance to radiotherapy or chemotherapy.
Exogenous tumor resistance is associated with hypoxia

and the ETM. Hypoxic cancer cells prevent the destabi-
lization of the strands of DNA by ionizing radiation,
indicating that molecular adaptations induced by oxygen-
sensitive mechanisms impact responses to radiotherapy
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and tumor recurrence [80]. Homozygous mutation of
Kelch-like ECH associated protein 1/TP53 (KEAP1/TP53)
promotes airway basal stem cell self-renewal, leading to
expansion of mutant stem cell clones. Meanwhile, deletion
of KEAP1 increases tumor resistance to oxidative stress
and radiotherapy [81]. This finding suggests that genomic
mutations promote tumor progression, metastasis, and
resistance to therapy through mutual effects between tumor
and hypoxia in the microenvironment (Fig. 1D).
Models for the progression of glioma following radio-

therapy or chemotherapy identified two patterns according
to the presence of residue cell clones [6]. In the ancestral
cell origin model, all dominant glioma clones from the
primary tumor (unlike refractory cells) are removed after
therapeutic intervention. The ancestral glioma cell accu-
mulates new alterations that are identified in the recurrent
tumor. In the clonal evolution model, radiotherapy or
chemotherapy removed most of the initial tumor clones,
but cells from the initial glioma clones survived and
proliferated to a recurrent tumor. Endogenous pathways are
altered after glioma progression. After treatment with
TMZ, the refractory glioma is characterized by hyper-
mutation and dysregulation of the retinoblastoma and
AKT-mammalian target of rapamycin (AKT-mTOR) path-
ways [9]. In contrast to IDH1-mutated gliomas, IDH1-
wild-type primary GBMs rarely present hypermutation
after TMZ chemotherapy, demonstrating a low risk for
TMZ-induced hypermutation in patients with GBM who
received standard treatment [7]. Only 15% of GBM cases
harbor hypermutation in highly expressed genes at
recurrence [11]. The metabolic status of highly prolifera-
tive stem cells and cancer cells is similar [82,83].
Menendez et al. found that metabolic reprogramming in
gliomas, which is influenced by the ETM, contributes to
drug resistance and tumor relapse. Solute carrier family 2
member 3 (SLC2A3; previously termed GLUT3) is highly
expressed in GSCs and indicates resistance to radiotherapy
or chemotherapy [84]. Pyruvate dehydrogenase kinase 1
(PDK1) inhibitor dichloroacetate enhanced the activity of
pyruvate dehydrogenase in rat GSCs and increased the
sensitivity of cells to chemotherapy and radiotherapy
in vitro [85].

Summary and perspectives

The mechanism underlying glioma evolution and the
dynamic interaction between glioma cells and the ETM
have been studied by many scientists [12,86,87]. However,
the field of therapeutics targeting the evolution of glioma
and the prevention of glioma progression is currently in its
infancy (Table 1). The resulting genetic instability of
glioma results in subsequent heterogeneity, which is
maintained by treatment with TMZ or other targeted
therapeutic selective pressures. Identification of clonal
dynamics in glioma samples obtained from sites of
resistance may lead to the development of further treatment
options that address tumor heterogeneity. However, this
approach should ideally be combined with the use of
noninvasive liquid biopsy sampling, including CSF of
patients with glioma, which enables easier surveillance.
The clinical implications of relapse subclones need to be
examined in CSF samples for the early diagnosis of
recurrent glioma [72]. Technological and computational
advances for exploring the glioma genome and its ETM
will offer a deeper understanding of the evolutionary
trajectories of this disease. On the basis of our current
understanding of the evolution patterns of glioma, the use
of combination therapies (e.g., combinations of targeted
and immune therapies) may be the most promising
approach. Clinical practice including clinical trials should
also be dynamic with the timely adjustment of antitumor
strategies. Although numerous clinical trials have inves-
tigated recurrent glioma, a deeper understanding of the
mechanisms and identification of additional targets of
glioma recurrence are warranted in this setting.
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