Bioartificial liver devices: Perspectives on the state of the art
Received date: 04 Aug 2010
Accepted date: 12 Oct 2010
Published date: 05 Mar 2011
Copyright
Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients’ own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an in vivo-like microenvironment for the growth of hepatocytes, thereby maintaining the cells’ viability and function to the maximum extent. One future trend in the development of the bioreactor is to improve the oxygen supply system. Another direction for future research on bioreactors is the application of biomedical materials. In conclusion, BAL is, in principle, an important therapeutic strategy for patients with acute liver failure, and may also be a bridge to liver transplantation. It requires further research and development, however, before it can enter clinical practice.
Key words: acute liver failure; bioartificial livers; hepatocyte; bioreactor
Yi-Tao DING , MM, Xiao-Lei SHI, MD . Bioartificial liver devices: Perspectives on the state of the art[J]. Frontiers of Medicine, 2011 , 5(1) : 15 -19 . DOI: 10.1007/s11684-010-0110-x
1 |
Pathikonda M, Munoz S J. Acute liver failure. Ann Hepatol, 2010, 9(1): 7-14
|
2 |
Gerlach J C, Zeilinger K, Patzer Ii J F. Bioartificial liver systems: why, what, whither? Regen Med, 2008, 3(4): 575-595
|
3 |
Chamuleau R A, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis, 2005, 20(4): 327-335
|
4 |
Poyck P P, Hoekstra R, van Wijk A C, Attanasio C, Calise F, Chamuleau R A, van Gulik T M. Functional and morphological comparison of three primary liver cell types cultured in the AMC bioartificial liver. Liver Transpl, 2007, 13(4): 589-598
|
5 |
Sauer I M, Zeilinger K, Obermayer N, Pless G, Grünwald A, Pascher A, Mieder T, Roth S, Goetz M, Kardassis D, Mas A, Neuhaus P, Gerlach J C. Primary human liver cells as source for modular extracorporeal liver support—a preliminary report. Int J Artif Organs, 2002, 25(10): 1001-1005
|
6 |
Wang H H, Wang Y J, Liu H L, Liu J, Huang Y P, Guo H T, Wang Y M. Detection of PERV by polymerase chain reaction and its safety in bioartificial liver support system. World J Gastroenterol, 2006, 12(8): 1287-1291
|
7 |
Hoekstra R, Chamuleau R A. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs, 2002, 25(3): 182-191
|
8 |
Kobayashi N, Okitsu T, Nakaji S, Tanaka N. Hybrid bioartificial liver: establishing a reversibly immortalized human hepatocyte line and developing a bioartificial liver for practical use. J Artif Organs, 2003, 6(4): 236-244
|
9 |
Fonsato V, Herrera M B, Buttiglieri S, Gatti S, Camussi G, Tetta C. Use of a rotary bioartificial liver in the differentiation of human liver stem cells. Tissue Eng Part C Methods, 2010, 16(1): 123-132
|
10 |
Sharma R, Greenhough S, Medine C N, Hay D C. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. J Biomed Biotechnol, 2010, doi:10.1155/2010/236147
|
11 |
Kobayashi N, Westerman K A, Tanaka N, Fox I J, Leboulch P. A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol, 2001, 6(4): 293-300
|
12 |
Watanabe T, Shibata N, Westerman K A, Okitsu T, Allain J E, Sakaguchi M, Totsugawa T, Maruyama M, Matsumura T, Noguchi H, Yamamoto S, Hikida M, Ohmori A, Reth M, Weber A, Tanaka N, Leboulch P, Kobayashi N. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation, 2003, 75(11): 1873-1880
|
13 |
Totsugawa T, Yong C, Rivas-Carrillo J D, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, Okitsu T, Westerman K A, Kohara M, Reth M, Tanaka N, Leboulch P, Kobayashi N. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol, 2007, 47(1): 74-82
|
14 |
Enosawa S, Miyashita T, Saito T, Omasa T, Matsumura T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant, 2006, 15(10): 873-880
|
15 |
Thomas R J, Bennett A, Thomson B, Shakesheff K M. Hepatic stellate cells on poly(DL-lactic acid) surfaces control the formation of 3D hepatocyte co-culture aggregates in vitro. Eur Cell Mater, 2006, 11: 16-26, discussion 26
|
16 |
Nedredal G I, Elvevold K, Ytrebø L M, Fuskevåg O M, Pettersen I, Bertheussen K, Langbakk B, Smedsrød B, Revhaug A. Significant contribution of liver nonparenchymal cells to metabolism of ammonia and lactate and cocultivation augments the functions of a bioartificial liver. Am J Physiol Gastrointest Liver Physiol, 2007, 293(1): G75-G83
|
17 |
Gu J, Shi X, Zhang Y, Ding Y. Heterotypic interactions in the preservation of morphology and functionality of porcine hepatocytes by bone marrow mesenchymal stem cells in vitro. J Cell Physiol, 2009, 219(1): 100-108
|
18 |
Gu J, Shi X, Chu X, Zhang Y, Ding Y. Contribution of bone marrow mesenchymal stem cells to porcine hepatocyte culture in vitro. Biochem Cell Biol, 2009, 87(4): 595-604
|
19 |
Gu J, Shi X, Zhang Y, Chu X, Hang H, Ding Y. Establishment of a three-dimensional co-culture system by porcine hepatocytes and bone marrow mesenchymal stem cells in vitro. Hepatol Res, 2009, 39(4): 398-407
|
20 |
Allen J W, Hassanein T, Bhatia S N. Advances in bioartificial liver devices. Hepatology, 2001, 34(3): 447-455
|
21 |
Park J K, Lee D H. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng, 2005, 99(4): 311-319
|
22 |
Park J, Li Y, Berthiaume F, Toner M, Yarmush M L, Tilles A W. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol Bioeng, 2008, 99(2): 455-467
|
23 |
Kinasiewicz A, Smietanka A, Gajkowska B, Werynski A. Impact of oxygenation of bioartificial liver using perfluorocarbon emulsion perftoran on metabolism of human hepatoma C3A cells. Artif Cells Blood Substit Immobil Biotechnol, 2008, 36(6): 525-534
|
24 |
Sauer I M, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Müller A R, Steinmüller T, Denner J, Neuhaus P, Gerlach J C. Clinical extracorporeal hybrid liver support—phase I study with primary porcine liver cells. Xenotransplantation, 2003, 10(5): 460-469
|
25 |
Poyck P P, Mareels G, Hoekstra R, van Wijk A C, van der Hoeven T V, van Gulik T M, Verdonck P R, Chamuleau R A. Enhanced oxygen availability improves liver-specific functions of the AMC bioartificial liver. Artif Organs, 2008, 32(2): 116-126
|
26 |
De Bartolo L, Jarosch-Von Schweder G, Haverich A, Bader A. A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: cell viability and tissue-specific functions. Biotechnol Prog, 2000, 16(1): 102-108
|
27 |
Sullivan J P, Gordon J E, Palmer A F. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor. Biotechnol Bioeng, 2006, 93(2): 306-317
|
28 |
Sullivan J P, Gordon J E, Bou-Akl T, Matthew H W, Palmer A F. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. Artif Cells Blood Substit Immobil Biotechnol, 2007, 35(6): 585-606
|
29 |
Sullivan J P, Harris D R, Palmer A F. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor. Artif Cells Blood Substit Immobil Biotechnol, 2008, 36(4): 386-402
|
30 |
Chu X H, Shi X L, Feng Z Q, Gu Z Z, Ding Y T. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett, 2009, 31(3): 347-352
|
31 |
Feng Z Q, Chu X, Huang N P, Wang T, Wang Y, Shi X, Ding Y, Gu Z Z. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials, 2009, 30(14): 2753-2763
|
32 |
Chu X H, Shi X L, Feng Z Q, Gu J Y, Xu H Y, Zhang Y, Gu Z Z, Ding Y T. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials, 2009, 30(27): 4533-4538
|
33 |
Park J, Berthiaume F, Toner M, Yarmush M L, Tilles A W. Microfabricated grooved substrates as platforms for bioartificial liver reactors. Biotechnol Bioeng, 2005, 90(5): 632-644
|
34 |
Park J, Berthiaume F, Toner M, Yarmush M L, Tilles A W. Microfabricated grooved substrates as platforms for bioartificial liver reactors. Biotechnol Bioeng, 2005, 90(5): 632-644
|
35 |
Hochleitner B, Hengster P, Bucher H, Ladurner R, Schneeberger S, Krismer A, Kleinsasser A, Barnas U, Klima G, Margreiter R. Significant survival prolongation in pigs with fulminant hepatic failure treated with a novel microgravity-based bioartificial liver. Artif Organs, 2006, 30(12): 906-914
|
36 |
Hochleitner B, Hengster P, Duo L, Bucher H, Klima G, Margreiter R. A novel bioartificial liver with culture of porcine hepatocyte aggregates under simulated microgravity. Artif Organs, 2005, 29(1): 58-66
|
37 |
Shinohara H, Shimada M, Ikemoto T, Morine Y, Imura S, Fujii M, Imaizumi T, Murayama M, Aiba Y. New type of artificial liver support system (ALSS) using the photocatalytic effect of titanium oxide. Dig Dis Sci, 2007, 52(9): 2271-2275
|
38 |
Sussman N L, Gislason G T, Conlin C A, Kelly J H. The Hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs, 1994, 18(5): 390-396
|
39 |
Watanabe F D, Mullon C J, Hewitt W R, Arkadopoulos N, Kahaku E, Eguchi S, Khalili T, Arnaout W, Shackleton C R, Rozga J, Solomon B, Demetriou A A. Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann Surg, 1997, 225(5): 484-491, discussion 491-494
|
40 |
Patzer J F, Mazariegos G V, Lopez R. Preclinical evaluation of the Excorp Medical, Inc., bioartifical liver support system. Am Coll Surg, 2002, 195: 299-310
|
41 |
Morsiani E, Pazzi P, Puviani A C, Brogli M, Valieri L, Gorini P, Scoletta P, Marangoni E, Ragazzi R, Azzena G, Frazzoli E, Di Luca D, Cassai E, Lombardi G, Cavallari A, Faenza S, Pasetto A, Girardis M, Jovine E, Pinna A D. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs, 2002, 25(3): 192-202
|
42 |
Ding Y T, Qiu Y D, Chen Z, Xu Q X, Zhang H Y, Tang Q, Yu D C. The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol, 2003, 9(4): 829-832
|
43 |
Xu Q, Yu D, Qiu Y, Zhang H, Ding Y. Function of a new internal bioartificial liver: an in vitro study. Ann Clin Lab Sci, 2003, 33(3): 306-312
|
/
〈 | 〉 |