Epigenetic modifiers: catalytic or noncatalytic, that is the question
Epigenetic modifiers: catalytic or noncatalytic, that is the question
[1] |
Morgan MAJ, Shilatifard A. Epigenetic moonlighting: catalytic-independent functions of histone modifiers in regulating transcription. Sci Adv 2023; 9(16): eadg6593
CrossRef
ADS
Google scholar
|
[2] |
Chen S, Liu D, Chen B, Li Z, Chang B, Xu C, Li N, Feng C, Hu X, Wang W, Zhang Y, Xie Y, Huang Q, Wang Y, Nimer SD, Chen S, Chen Z, Wang L, Sun X. Catalytic activity of Setd2 is essential for embryonic development in mice: establishment of a mouse model harboring patient-derived Setd2 mutation. Front Med 2024; 1(1): 1–1
CrossRef
ADS
Google scholar
|
[3] |
Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 2005; 280(42): 35261–35271
CrossRef
ADS
Google scholar
|
[4] |
Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, Teague J, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Forbes S, Jia M, Jones D, Knott H, Kok CY, Lau KW, Leroy C, Lin ML, McBride DJ, Maddison M, Maguire S, McLay K, Menzies A, Mironenko T, Mulderrig L, Mudie L, O'Meara S, Pleasance E, Rajasingham A, Shepherd R, Smith R, Stebbings L, Stephens P, Tang G, Tarpey PS, Turrell K, Dykema KJ, Khoo SK, Petillo D, Wondergem B, Anema J, Kahnoski RJ, Teh BT, Stratton MR, Futreal PA. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463(7279): 360–363
CrossRef
ADS
Google scholar
|
[5] |
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502(7471): 333–339
CrossRef
ADS
Google scholar
|
[6] |
Hu M, Sun XJ, Zhang YL, Kuang Y, Hu CQ, Wu WL, Shen SH, Du TT, Li H, He F, Xiao HS, Wang ZG, Liu TX, Lu H, Huang QH, Chen SJ, Chen Z. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci U S A 2010; 107(7): 2956–2961
CrossRef
ADS
Google scholar
|
[7] |
Li B, Gogol M, Carey M, Pattenden SG, Seidel C, Workman JL. Infrequently transcribed long genes depend on the Set2/Rpd3s pathway for accurate transcription. Genes Dev 2007; 21(11): 1422–1430
CrossRef
ADS
Google scholar
|
[8] |
Huff JT, Plocik AM, Guthrie C, Yamamoto KR. Reciprocal intronic and exonic histone modification regions in humans. Nat Struct Mol Biol 2010; 17(12): 1495–1499
CrossRef
ADS
Google scholar
|
[9] |
Scotti M, Kmita M. Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development 2012; 139(4): 731–739
CrossRef
ADS
Google scholar
|
[10] |
Deschamps J, Duboule D. Embryonic timing, axial stem cells, chromatin dynamics, and the Hox clock. Genes Dev 2017; 31(14): 1406–1416
CrossRef
ADS
Google scholar
|
[11] |
Dorighi KM, Swigut T, Henriques T, Bhanu NV, Scruggs BS, Nady N, Still CD 2nd, Garcia BA, Adelman K, Wysocka J. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol Cell 2017; 66(4): 568–576
CrossRef
ADS
Google scholar
|
[12] |
Rickels R, Herz HM, Sze CC, Cao K, Morgan MA, Collings CK, Gause M, Takahashi YH, Wang L, Rendleman EJ, Marshall SA, Krueger A, Bartom ET, Piunti A, Smith ER, Abshiru NA, Kelleher NL, Dorsett D, Shilatifard A. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat Genet 2017; 49(11): 1647–1653
CrossRef
ADS
Google scholar
|
[13] |
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Löser E, Schächtle MA, Mazina M, Loubiere V, Iovino N. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. Sci Adv 2023; 9(16): eadf2687
CrossRef
ADS
Google scholar
|
[14] |
Takebayashi S, Tamura T, Matsuoka C, Okano M. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of Dnmt1 with newly replicated regions. Mol Cell Biol 2007; 27(23): 8243–8258
CrossRef
ADS
Google scholar
|
[15] |
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17(3): 359–387
CrossRef
ADS
Google scholar
|
[16] |
McDaniel SL, Hepperla AJ, Huang J, Dronamraju R, Adams AT, Kulkarni VG, Davis IJ, Strahl BD. H3k36 methylation regulates nutrient stress response in Saccharomyces cerevisiae by enforcing transcriptional fidelity. Cell Rep 2017; 19(11): 2371–2382
CrossRef
ADS
Google scholar
|
[17] |
Larschan E, Alekseyenko AA, Gortchakov AA, Peng S, Li B, Yang P, Workman JL, Park PJ, Kuroda MI. Msl complex is attracted to genes marked by H3k36 trimethylation using a sequence-independent mechanism. Mol Cell 2007; 28(1): 121–133
CrossRef
ADS
Google scholar
|
[18] |
Liu DJ, Zhang F, Chen Y, Jin Y, Zhang YL, Chen SB, Xie YY, Huang QH, Zhao WL, Wang L, Xu PF, Chen Z, Chen SJ, Li B, Zhang A, Sun XJ. Setd2 knockout zebrafish is viable and fertile: differential and developmental stress-related requirements for Setd2 and histone H3k36 trimethylation in different vertebrate animals. Cell Discov 2020; 6(1): 72
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |