Adenosine deaminase 2 regulates the activation of the toll-like receptor 9 in response to nucleic acids
Adenosine deaminase 2 regulates the activation of the toll-like receptor 9 in response to nucleic acids
Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.
adenosine deaminase 2 / plasmacytoid dendritic cell / TLR9 / IL-3 / IFN-α / CpG ODN
[1] |
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med 2012; 367(24): 2322–2333
CrossRef
ADS
Google scholar
|
[2] |
Antonioli L, Colucci R, La Motta C, Tuccori M, Awwad O, Da Settimo F, Blandizzi C, Fornai M. Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders. Curr Drug Targets 2012; 13(6): 842–862
CrossRef
ADS
Google scholar
|
[3] |
Kohn DB, Booth C, Shaw KL, Xu-Bayford J, Garabedian E, Trevisan V, Carbonaro-Sarracino DA, Soni K, Terrazas D, Snell K, Ikeda A, Leon-Rico D, Moore TB, Buckland KF, Shah AJ, Gilmour KC, De Oliveira S, Rivat C, Crooks GM, Izotova N, Tse J, Adams S, Shupien S, Ricketts H, Davila A, Uzowuru C, Icreverzi A, Barman P, Campo Fernandez B, Hollis RP, Coronel M, Yu A, Chun KM, Casas CE, Zhang R, Arduini S, Lynn F, Kudari M, Spezzi A, Zahn M, Heimke R, Labik I, Parrott R, Buckley RH, Reeves L, Cornetta K, Sokolic R, Hershfield M, Schmidt M, Candotti F, Malech HL, Thrasher AJ, Gaspar HB. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N Engl J Med 2021; 384(21): 2002–2013
CrossRef
ADS
Google scholar
|
[4] |
Zavialov AV, Engström A. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem J 2005; 391(1): 51–57
CrossRef
ADS
Google scholar
|
[5] |
Zavialov AV, Yu X, Spillmann D, Lauvau G, Zavialov AV. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J Biol Chem 2010; 285(16): 12367–12377
CrossRef
ADS
Google scholar
|
[6] |
Dhanwani R, Takahashi M, Mathews IT, Lenzi C, Romanov A, Watrous JD, Pieters B, Hedrick CC, Benedict CA, Linden J, Nilsson R, Jain M, Sharma S. Cellular sensing of extracellular purine nucleosides triggers an innate IFN-β response. Sci Adv 2020; 6(30): eaba3688
CrossRef
ADS
Google scholar
|
[7] |
Zavialov AV, Gracia E, Glaichenhaus N, Franco R, Zavialov AV, Lauvau G. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol 2010; 88(2): 279–290
CrossRef
ADS
Google scholar
|
[8] |
Tsuboi I, Sagawa K, Shichijo S, Yokoyama MM, Ou DW, Wiederhold MD. Adenosine deaminase isoenzyme levels in patients with human T-cell lymphotropic virus type 1 and human immunodeficiency virus type 1 infections. Clin Diagn Lab Immunol 1995; 2(5): 626–630
CrossRef
ADS
Google scholar
|
[9] |
Porcel JM, Esquerda A, Bielsa S. Diagnostic performance of adenosine deaminase activity in pleural fluid: a single-center experience with over 2100 consecutive patients. Eur J Intern Med 2010; 21(5): 419–423
CrossRef
ADS
Google scholar
|
[10] |
Abdi M, Rahbari R, Khatooni Z, Naseri N, Najafi A, Khodadadi I. Serum adenosine deaminase (ADA) activity: a novel screening test to differentiate HIV monoinfection from HIV-HBV and HIV-HCV coinfections. J Clin Lab Anal 2016; 30(3): 200–203
CrossRef
ADS
Google scholar
|
[11] |
Luo W, Dong L, Chen F, Lei W, He L, Zhou Q, Lamy T, Zavialov AV. ELISA based assays to measure adenosine deaminases concentration in serum and saliva for the diagnosis of ADA2 deficiency and cancer. Front Immunol 2022; 13: 928438
CrossRef
ADS
Google scholar
|
[12] |
Gao ZW, Yang L, Liu C, Wang X, Guo WT, Zhang HZ, Dong K. Distinct roles of adenosine deaminase isoenzymes ADA1 and ADA2: a pan-cancer analysis. Front Immunol 2022; 13: 903461
CrossRef
ADS
Google scholar
|
[13] |
Lee PY, Schulert GS, Canna SW, Huang Y, Sundel J, Li Y, Hoyt KJ, Blaustein RB, Wactor A, Do T, Halyabar O, Chang MH, Dedeoglu F, Case SM, Meidan E, Lo MS, Sundel RP, Richardson ET, Newburger JW, Hershfield MS, Son MB, Henderson LA, Nigrovic PA. Adenosine deaminase 2 as a biomarker of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Ann Rheum Dis 2020; 79(2): 225–231
CrossRef
ADS
Google scholar
|
[14] |
Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, Stone DL, Chae JJ, Rosenzweig SD, Bishop K, Barron KS, Kuehn HS, Hoffmann P, Negro A, Tsai WL, Cowen EW, Pei W, Milner JD, Silvin C, Heller T, Chin DT, Patronas NJ, Barber JS, Lee CC, Wood GM, Ling A, Kelly SJ, Kleiner DE, Mullikin JC, Ganson NJ, Kong HH, Hambleton S, Candotti F, Quezado MM, Calvo KR, Alao H, Barham BK, Jones A, Meschia JF, Worrall BB, Kasner SE, Rich SS, Goldbach-Mansky R, Abinun M, Chalom E, Gotte AC, Punaro M, Pascual V, Verbsky JW, Torgerson TR, Singer NG, Gershon TR, Ozen S, Karadag O, Fleisher TA, Remmers EF, Burgess SM, Moir SL, Gadina M, Sood R, Hershfield MS, Boehm M, Kastner DL, Aksentijevich I. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 2014; 370(10): 911–920
CrossRef
ADS
Google scholar
|
[15] |
Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S, Zlotogorski A, Berkun Y, Press JJ, Mukamel M, Voth I, Hashkes PJ, Harel L, Hoffer V, Ling E, Yalcinkaya F, Kasapcopur O, Lee MK, Klevit RE, Renbaum P, Weinberg-Shukron A, Sener EF, Schormair B, Zeligson S, Marek-Yagel D, Strom TM, Shohat M, Singer A, Rubinow A, Pras E, Winkelmann J, Tekin M, Anikster Y, King MC, Levy-Lahad E. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 2014; 370(10): 921–931
CrossRef
ADS
Google scholar
|
[16] |
Signa S, Bertoni A, Penco F, Caorsi R, Cafaro A, Cangemi G, Volpi S, Gattorno M, Schena F. Adenosine deaminase 2 deficiency (DADA2): a crosstalk between innate and adaptive immunity. Front Immunol 2022; 13: 935957
CrossRef
ADS
Google scholar
|
[17] |
Kaljas Y, Liu C, Skaldin M, Wu C, Zhou Q, Lu Y, Aksentijevich I, Zavialov AV. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell Mol Life Sci 2017; 74(3): 555–570
CrossRef
ADS
Google scholar
|
[18] |
Carmona-Rivera C, Khaznadar SS, Shwin KW, Irizarry-Caro JA, O’Neil LJ, Liu Y, Jacobson KA, Ombrello AK, Stone DL, Tsai WL, Kastner DL, Aksentijevich I, Kaplan MJ, Grayson PC. Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood 2019; 134(4): 395–406
CrossRef
ADS
Google scholar
|
[19] |
Deuitch NT, Yang D, Lee PY, Yu X, Moura NS, Schnappauf O, Ombrello AK, Stone D, Kuehn HS, Rosenzweig SD, Hoffmann P, Cudrici C, Levy DM, Kessler E, Soep JB, Hay AD, Dalrymple A, Zhang Y, Sun L, Zhang Q, Tang X, Wu Y, Rao K, Li H, Luo H, Zhang Y, Burnham JM, Boehm M, Barron K, Kastner DL, Aksentijevich I, Zhou Q. TNF inhibition in vasculitis management in adenosine deaminase 2 deficiency (DADA2). J Allergy Clin Immunol 2022; 149(5): 1812–1816.e6
|
[20] |
Lee PY, Aksentijevich I, Zhou Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin Immunopathol 2022; 44(3): 269–280
CrossRef
ADS
Google scholar
|
[21] |
Karapetyan L, Luke JJ, Davar D. Toll-like receptor 9 agonists in cancer. OncoTargets Ther 2020; 13: 10039–10060
CrossRef
ADS
Google scholar
|
[22] |
Pohar J, Lainšček D, Ivičak-Kocjan K, Cajnko MM, Jerala R, Benčina M. Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nat Commun 2017; 8(1): 15363
CrossRef
ADS
Google scholar
|
[23] |
Ohto U, Ishida H, Shibata T, Sato R, Miyake K, Shimizu T. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity 2018; 48(4): 649–658.e4
CrossRef
ADS
Google scholar
|
[24] |
Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20(1): 709–760
CrossRef
ADS
Google scholar
|
[25] |
Verthelyi D, Zeuner RA. Differential signaling by CpG DNA in DCs and B cells: not just TLR9. Trends Immunol 2003; 24(10): 519–522
CrossRef
ADS
Google scholar
|
[26] |
Van der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: ally or adversary. Cell Rep 2022; 40(4): 111148
CrossRef
ADS
Google scholar
|
[27] |
Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015; 15(8): 471–485
CrossRef
ADS
Google scholar
|
[28] |
Bencze D, Fekete T, Pázmándi K. Type I interferon production of plasmacytoid dendritic cells under control. Int J Mol Sci 2021; 22(8): 4190
CrossRef
ADS
Google scholar
|
[29] |
Kerkmann M, Rothenfusser S, Hornung V, Towarowski A, Wagner M, Sarris A, Giese T, Endres S, Hartmann G. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J Immunol 2003; 170(9): 4465–4474
CrossRef
ADS
Google scholar
|
[30] |
Combes A, Camosseto V, N’Guessan P, Argüello RJ, Mussard J, Caux C, Bendriss-Vermare N, Pierre P, Gatti E. BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells. Nat Commun 2017; 8(1): 913
CrossRef
ADS
Google scholar
|
[31] |
Marongiu L, Gornati L, Artuso I, Zanoni I, Granucci F. Below the surface: the inner lives of TLR4 and TLR9. J Leukoc Biol 2019; 106(1): 147–160
CrossRef
ADS
Google scholar
|
[32] |
Liu C, Skaldin M, Wu C, Lu Y, Zavialov AV. Application of ADA1 as a new marker enzyme in sandwich ELISA to study the effect of adenosine on activated monocytes. Sci Rep 2016; 6(1): 31370
CrossRef
ADS
Google scholar
|
[33] |
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal biology and function: modern view of cellular debris bin. Cells 2020; 9(5): 1131
CrossRef
ADS
Google scholar
|
[34] |
Haas T, Metzger J, Schmitz F, Heit A, Müller T, Latz E, Wagner H. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 2008; 28(3): 315–323
CrossRef
ADS
Google scholar
|
[35] |
Kim S, Kaiser V, Beier E, Bechheim M, Guenthner-Biller M, Ablasser A, Berger M, Endres S, Hartmann G, Hornung V. Self-priming determines high type I IFN production by plasmacytoid dendritic cells. Eur J Immunol 2014; 44(3): 807–818
CrossRef
ADS
Google scholar
|
[36] |
Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11(3): 263–270
CrossRef
ADS
Google scholar
|
[37] |
Sleat DE, Zheng H, Qian M, Lobel P. Identification of sites of mannose 6-phosphorylation on lysosomal proteins. Mol Cell Proteomics 2006; 5(4): 686–701
CrossRef
ADS
Google scholar
|
[38] |
Niemeyer CM, Sieff CA, Mathey-Prevot B, Wimperis JZ, Bierer BE, Clark SC, Nathan DG. Expression of human interleukin-3 (multi-CSF) is restricted to human lymphocytes and T-cell tumor lines. Blood 1989; 73(4): 945–951
CrossRef
ADS
Google scholar
|
[39] |
Janke M, Witsch EJ, Mages HW, Hutloff A, Kroczek RA. Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology 2006; 118(3): 353–360
CrossRef
ADS
Google scholar
|
[40] |
Bénard A, Jacobsen A, Brunner M, Krautz C, Klösch B, Swierzy I, Naschberger E, Podolska MJ, Kouhestani D, David P, Birkholz T, Castellanos I, Trufa D, Sirbu H, Vetter M, Kremer AE, Hildner K, Hecker A, Edinger F, Tenbusch M, Mühl-Zürbes P, Steinkasserer A, Richter E, Streeck H, Berger MM, Brenner T, Weigand MA, Swirski FK, Schett G, Grützmann R, Weber GF. Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nat Commun 2021; 12(1): 1112
CrossRef
ADS
Google scholar
|
[41] |
Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 2004; 34(1): 251–262
CrossRef
ADS
Google scholar
|
[42] |
Hartmann G, Battiany J, Poeck H, Wagner M, Kerkmann M, Lubenow N, Rothenfusser S, Endres S. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol 2003; 33(6): 1633–1641
CrossRef
ADS
Google scholar
|
[43] |
Zhong XZ, Zou Y, Sun X, Dong G, Cao Q, Pandey A, Rainey JK, Zhu X, Dong XP. Inhibition of transient receptor potential channel mucolipin-1 (TRPML1) by lysosomal adenosine involved in severe combined immunodeficiency diseases. J Biol Chem 2017; 292(8): 3445–3455
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |