FGF13 suppresses acute myeloid leukemia by regulating bone marrow niches

PDF(4927 KB)
PDF(4927 KB)
Frontiers of Medicine ›› 2022, Vol. 16 ›› Issue (6) : 896-908. DOI: 10.1007/s11684-022-0944-z
RESEARCH ARTICLE

作者信息 +

FGF13 suppresses acute myeloid leukemia by regulating bone marrow niches

Author information +
History +

Abstract

Fibroblast growth factor 13 (FGF13) is aberrantly expressed in multiple cancer types, suggesting its essential role in tumorigenesis. Hence, we aimed to explore its definite role in the development of acute myeloid leukemia (AML) and emphasize its associations with bone marrow niches. Results showed that FGF13 was lowly expressed in patients with AML and that its elevated expression was related to prolonged overall survival (OS). Univariate and multivariate Cox regression analyses identified FGF13 as an independent prognostic factor. A prognostic nomogram integrating FGF13 and clinicopathologic variables was constructed to predict 1-, 3-, and 5-year OS. Gene mutation and functional analyses indicated that FGF13 was not associated with AML driver mutations but was related to bone marrow niches. As for immunity, FGF13 was remarkably associated with T cell count, immune checkpoint genes, and cytokines. In addition, FGF13 overexpression substantially inhibited the growth and significantly induced the early apoptosis of AML cells. The xenograft study indicated that FGF13 overexpression prolonged the survival of recipient mice. Overall, FGF13 could serve as an independent prognostic factor for AML, and it was closely related to the bone marrow microenvironment.

Keywords

acute myeloid leukemia / FGF13 / prognosis / immune-related genes / bone marrow niches

引用本文

导出引用
. . Frontiers of Medicine. 2022, 16(6): 896-908 https://doi.org/10.1007/s11684-022-0944-z

参考文献

[1]
DöhnerH, WeiAH, LöwenbergB. Towards precision medicine for AML. Nat Rev Clin Oncol 2021; 18( 9): 577– 590
CrossRef ADS Pubmed Google scholar
[2]
AssiSA, ImperatoMR, ColemanDJL, PickinA, PotluriS, PtasinskaA, ChinPS, BlairH, CauchyP, JamesSR, Zacarias-CabezaJ, GildingLN, BeggsA, ClokieS, LokeJC, JenkinP, UddinA, DelwelR, RichardsSJ, RaghavanM, GriffithsMJ, HeidenreichO, CockerillPN, BoniferC. Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat Genet 2019; 51( 1): 151– 162
CrossRef ADS Pubmed Google scholar
[3]
DöhnerH, EsteyE, GrimwadeD, AmadoriS, AppelbaumFR, BüchnerT, DombretH, EbertBL, FenauxP, LarsonRA, LevineRL, Lo-CocoF, NaoeT, NiederwieserD, OssenkoppeleGJ, SanzM, SierraJ, TallmanMS, TienHF, WeiAH, LöwenbergB, BloomfieldCD. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017; 129( 4): 424– 447
CrossRef ADS Pubmed Google scholar
[4]
Méndez-FerrerS, BonnetD, SteensmaDP, HasserjianRP, GhobrialIM, GribbenJG, AndreeffM, KrauseDS. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20( 5): 285– 298
CrossRef ADS Pubmed Google scholar
[5]
ManciniSJC, BalabanianK, CorreI, GavardJ, LazennecG, LeBousse-Kerdilès MC, LouacheF, Maguer-SattaV, MazureNM, Mechta-GrigoriouF, PeyronJF, TrichetV, HeraultO. Deciphering tumor niches: lessons from solid and hematological malignancies. Front Immunol 2021; 12 : 766275
CrossRef ADS Pubmed Google scholar
[6]
DegirolamoC, SabbàC, MoschettaA. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2016; 15( 1): 51– 69
CrossRef ADS Pubmed Google scholar
[7]
OlsenSK, GarbiM, ZampieriN, EliseenkovaAV, OrnitzDM, GoldfarbM, MohammadiM. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 2003; 278( 36): 34226– 34236
CrossRef ADS Pubmed Google scholar
[8]
WeiEQ, SindenDS, MaoL, ZhangH, WangC, PittGS. Inducible Fgf13 ablation enhances caveolae-mediated cardioprotection during cardiac pressure overload. Proc Natl Acad Sci USA 2017; 114( 20): E4010– E4019
CrossRef ADS Pubmed Google scholar
[9]
WuQF, YangL, LiS, WangQ, YuanXB, GaoX, BaoL, ZhangX. Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 2012; 149( 7): 1549– 1564
CrossRef ADS Pubmed Google scholar
[10]
LuH, ShiX, WuG, ZhuJ, SongC, ZhangQ, YangG. FGF13 regulates proliferation and differentiation of skeletal muscle by down-regulating Spry1. Cell Prolif 2015; 48( 5): 550– 560
CrossRef ADS Pubmed Google scholar
[11]
OkadaT, MurataK, HiroseR, MatsudaC, KomatsuT, IkekitaM, NakawatariM, NakayamaF, WakatsukiM, OhnoT, KatoS, ImaiT, ImamuraT. Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells. Sci Rep 2013; 3( 1): 2899
CrossRef ADS Pubmed Google scholar
[12]
LuH, YinM, WangL, ChengJ, ChengW, AnH, ZhangT. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells. Cancer Biol Ther 2020; 21( 11): 1014– 1024
CrossRef ADS Pubmed Google scholar
[13]
JohnstoneCN, PattisonAD, HarrisonPF, PowellDR, LockP, ErnstM, AndersonRL, BeilharzTH. FGF13 promotes metastasis of triple-negative breast cancer. Int J Cancer 2020; 147( 1): 230– 243
CrossRef ADS Pubmed Google scholar
[14]
BindeaG, MlecnikB, TosoliniM, KirilovskyA, WaldnerM, ObenaufAC, AngellH, FredriksenT, LafontaineL, BergerA, BrunevalP, FridmanWH, BeckerC, PagèsF, SpeicherMR, TrajanoskiZ, GalonJ. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39( 4): 782– 795
CrossRef ADS Pubmed Google scholar
[15]
LiR, ZhangL, QinZ, WeiY, DengZ, ZhuC, TangJ, MaL. High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer. Exp Cell Res 2019; 378( 1): 32– 40
CrossRef ADS Pubmed Google scholar
[16]
CzabotarPE, LesseneG, StrasserA, AdamsJM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15( 1): 49– 63
CrossRef ADS Pubmed Google scholar
[17]
KonoplevaM, LetaiA. BCL-2 inhibition in AML: an unexpected bonus?. Blood 2018; 132( 10): 1007– 1012
CrossRef ADS Pubmed Google scholar
[18]
OtaniY, IchikawaT, KurozumiK, InoueS, IshidaJ, OkaT, ShimizuT, TomitaY, HattoriY, UnedaA, MatsumotoY, MichiueH, DateI. Fibroblast growth factor 13 regulates glioma cell invasion and is important for bevacizumab-induced glioma invasion. Oncogene 2018; 37( 6): 777– 786
CrossRef ADS Pubmed Google scholar
[19]
TurkowskiK, HerzbergF, GüntherS, BrunnD, WeigertA, MeisterM, MuleyT, KriegsmannM, SchneiderMA, WinterH, ThomasM, GrimmingerF, SeegerW, SavaiPullamsetti S, SavaiR. Fibroblast growth factor-14 acts as tumor suppressor in lung adenocarcinomas. Cells 2020; 9( 8): E1755
CrossRef ADS Pubmed Google scholar
[20]
SuT, HuangL, ZhangN, PengS, LiX, WeiG, ZhaiE, ZengZ, XuL. FGF14 functions as a tumor suppressor through inhibiting PI3K/AKT/mTOR pathway in colorectal cancer. J Cancer 2020; 11( 4): 819– 825
CrossRef ADS Pubmed Google scholar
[21]
WuX, LiM, LiY, DengY, KeS, LiF, WangY, ZhouS. Fibroblast growth factor 11 (FGF11) promotes non-small cell lung cancer (NSCLC) progression by regulating hypoxia signaling pathway. J Transl Med 2021; 19( 1): 353
CrossRef ADS Pubmed Google scholar
[22]
LiJ, CaoJ, LiP, YaoZ, DengR, YingL, TianJ. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis. BMC Cancer 2021; 21( 1): 858
CrossRef ADS Pubmed Google scholar
[23]
LiK, TayFR, YiuCKY. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther 2020; 207 : 107465
CrossRef ADS Pubmed Google scholar
[24]
PietrzakJ, MirowskiM, ŚwiechowskiR, WodzińskiD, WosiakA, MichalskaK, BalcerczakE. Importance of altered gene expression of metalloproteinases 2, 9, and 16 in acute myeloid leukemia: preliminary study. J Oncol 2021; 2021 : 6697975
CrossRef ADS Pubmed Google scholar
[25]
AzevedoPL, OliveiraNCA, CorrêaS, Castelo-BrancoMTL, AbdelhayE, BinatoR. Canonical WNT signaling pathway is altered in mesenchymal stromal cells from acute myeloid leukemia patients and is implicated in BMP4 down-regulation. Transl Oncol 2019; 12( 4): 614– 625
CrossRef ADS Pubmed Google scholar
[26]
MariniJC, ForlinoA, BächingerHP, BishopNJ, ByersPH, PaepeA, FassierF, Fratzl-ZelmanN, KozloffKM, KrakowD, MontpetitK, SemlerO. Osteogenesis imperfecta. Nat Rev Dis Primers 2017; 3( 1): 17052
CrossRef ADS Pubmed Google scholar
[27]
LuP, WeaverVM, WerbZ. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196( 4): 395– 406
CrossRef ADS Pubmed Google scholar
[28]
ChenW, YangZ. Identification of differentially expressed genes reveals BGN predicting overall survival and tumor immune infiltration of gastric cancer. Comput Math Methods Med 2021; 2021 : 5494840
CrossRef ADS Pubmed Google scholar
[29]
JiaYY, YuY, LiHJ. POSTN promotes proliferation and epithelial-mesenchymal transition in renal cell carcinoma through ILK/AKT/mTOR pathway. J Cancer 2021; 12( 14): 4183– 4195
CrossRef ADS Pubmed Google scholar
[30]
CharoentongP, FinotelloF, AngelovaM, MayerC, EfremovaM, RiederD, HacklH, TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017; 18( 1): 248– 262
CrossRef ADS Pubmed Google scholar
[31]
SmithIA, KnezevicBR, AmmannJU, RhodesDA, AwD, PalmerDB, MatherIH, TrowsdaleJ. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. J Immunol 2010; 184( 7): 3514– 3525
CrossRef ADS Pubmed Google scholar
[32]
JiangZ, LiuF. Butyrophilin-like 9 (BTNL9) suppresses invasion and correlates with favorable prognosis of uveal melanoma. Med Sci Monit 2019; 25 : 3190– 3198
CrossRef ADS Pubmed Google scholar
[33]
MoQ, XuK, LuoC, ZhangQ, WangL, RenG. BTNL9 is frequently downregulated and inhibits proliferation and metastasis via the P53/CDC25C and P53/GADD45 pathways in breast cancer. Biochem Biophys Res Commun 2021; 553 : 17– 24
CrossRef ADS Pubmed Google scholar
[34]
AlfaroC, SanmamedMF, Rodríguez-RuizME, TeijeiraÁ, OñateC, GonzálezÁ, PonzM, SchalperKA, Pérez-GraciaJL, MeleroI. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 2017; 60 : 24– 31
CrossRef ADS Pubmed Google scholar
[35]
AldinucciD, BorgheseC, CasagrandeN. The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 2020; 12( 7): E1765
CrossRef ADS Pubmed Google scholar
[36]
GulubovaM, AleksandrovaE, VlaykovaT. Promoter polymorphisms in TGFB1 and IL10 genes influence tumor dendritic cells infiltration, development and prognosis of colorectal cancer. J Gene Med 2018; 20( 2–3): e3005
CrossRef ADS Pubmed Google scholar
[37]
PropperDJ, BalkwillFR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022; 19( 4): 237– 253
CrossRef ADS Pubmed Google scholar
[38]
SarterK, LeimgruberE, GobetF, AgrawalV, Dunand-SauthierI, BarrasE, Mastelic-GavilletB, KamathA, FontannazP, GuéryL, DuraesFV, LippensC, RavnU, Santiago-RaberML, MagistrelliG, FischerN, SiegristCA, HuguesS, ReithW. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes. J Exp Med 2016; 213( 2): 177– 187
CrossRef ADS Pubmed Google scholar
[39]
TrinchieriG. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3( 2): 133– 146
CrossRef ADS Pubmed Google scholar
[40]
PropperDJ, BalkwillFR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol 2022; 19( 4): 237– 253
CrossRef ADS Pubmed Google scholar
[41]
CrespoJ, WuK, LiW, KryczekI, MajT, VatanL, WeiS, OpipariAW, ZouW. Human naive T cells express functional CXCL8 and promote tumorigenesis. J Immunol 2018; 201( 2): 814– 820
CrossRef ADS Pubmed Google scholar
[42]
SantosFP, KantarjianH, CortesJ, Quintas-CardamaA. Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Curr Opin Investig Drugs 2010; 11( 12): 1450– 1465
Pubmed
[43]
LergaA, RichardC, DelgadoMD, CañellesM, FradeP, CuadradoMA, LeónJ. Apoptosis and mitotic arrest are two independent effects of the protein phosphatases inhibitor okadaic acid in K562 leukemia cells. Biochem Biophys Res Commun 1999; 260( 1): 256– 264
CrossRef ADS Pubmed Google scholar
[44]
HortonTM, BlaneySM, LangevinAM, KuhnJ, KamenB, BergSL, BernsteinM, WeitmanS. Phase I trial and pharmacokinetic study of raltitrexed in children with recurrent or refractory leukemia: a pediatric oncology group study. Clin Cancer Res 2005; 11( 5): 1884– 1889
CrossRef ADS Pubmed Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0905900).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-022-0944-z and is accessible for authorized users.

Compliance with ethics guidelines

Ran Li, Kai Xue, and Junmin Li declare no conflict of interest. The study involved animals that were maintained and treated in accordance with Chinese legal requirements. The experiments were approved by the Ethics Committee of Ruijin Hospital Clinical Research Center, Shanghai Jiao Tong University School of Medicine, and the rules were strictly followed during the experiments.

版权

2022 Higher Education Press
PDF(4927 KB)

Accesses

Citation

Detail

段落导航
相关文章

/