Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease

PDF(840 KB)
PDF(840 KB)
Frontiers of Medicine ›› 2021, Vol. 15 ›› Issue (6) : 842-866. DOI: 10.1007/s11684-021-0865-2
REVIEW

作者信息 +

Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease

Author information +
History +

Abstract

Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.

Keywords

free-living amoebae / central nervous system infection / primary amoebic meningoencephalitis / granulomatous amoebic encephalitis

引用本文

导出引用
. . Frontiers of Medicine. 2021, 15(6): 842-866 https://doi.org/10.1007/s11684-021-0865-2

参考文献

[1]
Dye C. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci 2014; 369(1645): 20130426
CrossRef ADS Pubmed Google scholar
[2]
Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 2007; 50(1): 1–26
CrossRef ADS Pubmed Google scholar
[3]
Król-Turmińska K, Olender A. Human infections caused by free-living amoebae. Ann Agric Environ Med 2017; 24(2): 254–260
CrossRef ADS Pubmed Google scholar
[4]
Lau HL, De Lima Corvino DF, Guerra FM Jr, Malik AM, Lichtenberger PN, Gultekin SH, Ritter JM, Roy S, Ali IKM, Cope JR, Post MJD, Gonzales Zamora JA. Granulomatous amoebic encephalitis caused by Acanthamoeba in a patient with AIDS: a challenging diagnosis. Acta Clin Belg 2021; 76(2): 127–131
CrossRef ADS Pubmed Google scholar
[5]
Balczun C, Scheid PL. Free-living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses 2017; 9(4): E65
CrossRef ADS Pubmed Google scholar
[6]
Zaheer R. Naegleria fowleri—the brain-eating amoeba. J Pak Med Assoc 2013; 63(11): 1456
Pubmed
[7]
Gelman BB, Popov V, Chaljub G, Nader R, Rauf SJ, Nauta HW, Visvesvara GS. Neuropathological and ultrastructural features of amebic encephalitis caused by Sappinia diploidea. J Neuropathol Exp Neurol 2003; 62(10): 990–998
CrossRef ADS Pubmed Google scholar
[8]
Qvarnstrom Y, da Silva AJ, Schuster FL, Gelman BB, Visvesvara GS. Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. J Infect Dis 2009; 199(8): 1139–1142
CrossRef ADS Pubmed Google scholar
[9]
Visvesvara GS, Sriram R, Qvarnstrom Y, Bandyopadhyay K, Da Silva AJ, Pieniazek NJ, Cabral GA. Paravahlkampfia francinae n. sp. masquerading as an agent of primary amoebic meningoencephalitis. J Eukaryot Microbiol 2009; 56(4): 357–366
CrossRef ADS Pubmed Google scholar
[10]
Glöckner G, Noegel AA. Comparative genomics in the Amoebozoa clade. Biol Rev Camb Philos Soc 2013; 88(1): 215–225
CrossRef ADS Pubmed Google scholar
[11]
Bovee EC, Jahn TL. Mechanisms of movement in taxonomy of Sarcodina. 3. Orders, suborders, families, and subfamilies in the superorder Lobida. Syst Zool 1966; 15(3): 229–240
CrossRef ADS Pubmed Google scholar
[12]
Schaeffer AA. Taxonomy of the Amebas; with descriptions of thirty-nine new marine and freshwater species. Washington: The Carnegie Institution of Washington, 1926
[13]
Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T. A revised classification of naked lobose amoebae (Amoebozoa: lobosa). Protist 2011; 162(4): 545–570
CrossRef ADS Pubmed Google scholar
[14]
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, Del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 2019; 66(1): 4–119
CrossRef ADS Pubmed Google scholar
[15]
Bondarenko N, Glotova A, Nassonova E, Masharsky A, Kudryavtsev A, Smirnov A. The complete mitochondrial genome of Vannella simplex (Amoebozoa, Discosea, Vannellida). Eur J Protistol 2018; 63: 83–95
CrossRef ADS Pubmed Google scholar
[16]
Corsaro D. Update on Acanthamoeba phylogeny. Parasitol Res 2020; 119(10): 3327–3338
CrossRef ADS Pubmed Google scholar
[17]
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43(4): 415–434
CrossRef ADS Pubmed Google scholar
[18]
Adl SM, Leander BS, Simpson AG, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, Kolisko M, Lane CE, Lodge DJ, Mann DG, Meisterfeld R, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Smirnov AV, Spiegel F. Diversity, nomenclature, and taxonomy of protists. Syst Biol 2007; 56(4): 684–689
CrossRef ADS Pubmed Google scholar
[19]
Cavalier-Smith T, Fiore-Donno AM, Chao E, Kudryavtsev A, Berney C, Snell EA, Lewis R. Multigene phylogeny resolves deep branching of Amoebozoa. Mol Phylogenet Evol 2015; 83: 293–304
CrossRef ADS Pubmed Google scholar
[20]
Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, Cepicka I, Kostka M, Kosakyan A, Alcântara DMC, Roger AJ, Shadwick LL, Smirnov A, Kudryavtsev A, Lahr DJG, Brown MW. Between a pod and a hard test: the deep evolution of Amoebae. Mol Biol Evol 2017; 34(9): 2258–2270
CrossRef ADS Pubmed Google scholar
[21]
Pánek T, Ptáčková E, Čepička I. Survey on diversity of marine/saline anaerobic Heterolobosea (Excavata: Discoba) with description of seven new species. Int J Syst Evol Microbiol 2014; 64(Pt 7): 2280–2304
CrossRef ADS Pubmed Google scholar
[22]
Piñero JE, Chávez-Munguía B, Omaña-Molina M, Lorenzo-Morales J. Naegleria fowleri. Trends Parasitol 2019; 35(10): 848–849
CrossRef ADS Pubmed Google scholar
[23]
Bass D, Chao EE, Nikolaev S, Yabuki A, Ishida K, Berney C, Pakzad U, Wylezich C, Cavalier-Smith T. Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist 2009; 160(1): 75–109
CrossRef ADS Pubmed Google scholar
[24]
Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J 2013; 7(12): 2387–2399
CrossRef ADS Pubmed Google scholar
[25]
Brown MW, Spiegel FW, Silberman JD. Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 2009; 26(12): 2699–2709
CrossRef ADS Pubmed Google scholar
[26]
Martinez AJ, Visvesvara GS. Free-living, amphizoic and opportunistic amebas. Brain Pathol 1997; 7(1): 583–598
CrossRef ADS Pubmed Google scholar
[27]
Page FC. An illustrated key to freshwater and soil amoebae: with notes on cultivation and ecology. Scientific Publication No. 34. Ambleside: Freshwater Biological Association, 1976: 155
[28]
Wilkinson DM, Mitchell EAD. Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol J 2010; 27(6–7): 520–533
CrossRef ADS Google scholar
[29]
Geisen S, Rosengarten J, Koller R, Mulder C, Urich T, Bonkowski M. Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 2015; 17(11): 4538–4546
CrossRef ADS Pubmed Google scholar
[30]
Han BP, Wang T, Lin QQ, Dumont HJ. Carnivory and active hunting by the planktonic testate amoeba Difflugia tuberspinifera. Hydrobiologia 2008; 596(1): 197–201
CrossRef ADS Google scholar
[31]
Bowers B, Korn ED. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 1969; 41(3): 786–805
CrossRef ADS Pubmed Google scholar
[32]
Anwar A, Khan NA, Siddiqui R. Combating Acanthamoeba spp. cysts: what are the options? Parasit Vectors 2018; 11(1): 26
CrossRef ADS Pubmed Google scholar
[33]
Hughes R, Kilvington S. Comparison of hydrogen peroxide contact lens disinfection systems and solutions against Acanthamoeba polyphaga. Antimicrob Agents Chemother 2001; 45(7): 2038–2043
CrossRef ADS Pubmed Google scholar
[34]
Greub G, Raoult D. Biocides currently used for bronchoscope decontamination are poorly effective against free-living amoebae. Infect Control Hosp Epidemiol 2003; 24(10): 784–786
CrossRef ADS Pubmed Google scholar
[35]
Ali M, Jamal SB, Farhat SM. Naegleria fowleri in Pakistan. Lancet Infect Dis 2020; 20(1): 27–28
CrossRef ADS Pubmed Google scholar
[36]
Rohr U, Weber S, Michel R, Selenka F, Wilhelm M. Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 1998; 64(5): 1822–1824
CrossRef ADS Pubmed Google scholar
[37]
Fouque E, Trouilhé MC, Thomas V, Hartemann P, Rodier MH, Héchard Y. Cellular, biochemical, and molecular changes during encystment of free-living amoebae. Eukaryot Cell 2012; 11(4): 382–387
CrossRef ADS Pubmed Google scholar
[38]
Rodríguez-Zaragoza S. Ecology of free-living amoebae. Crit Rev Microbiol 1994; 20(3): 225–241
CrossRef ADS Pubmed Google scholar
[39]
Amann R, Springer N, Schönhuber W, Ludwig W, Schmid EN, Müller KD, Michel R. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 1997; 63(1): 115–121
CrossRef ADS Pubmed Google scholar
[40]
Pisani F, Costa C, Oteri G, Ioli A. Identification of amoebae in the CSF in a patient with meningoencephalitis. J Neurol Neurosurg Psychiatry 2003; 74(10): 1445–1446
CrossRef ADS Pubmed Google scholar
[41]
Bass P, Bischoff PJ. Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. J Eukaryot Microbiol 2001; 48(4): 475–479
CrossRef ADS Pubmed Google scholar
[42]
Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15(2): 167–193
CrossRef ADS Pubmed Google scholar
[43]
Barbeau J, Buhler T. Biofilms augment the number of free-living amoebae in dental unit waterlines. Res Microbiol 2001; 152(8): 753–760
CrossRef ADS Pubmed Google scholar
[44]
Hoffmann R, Michel R. Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Environ Health 2001; 203(3): 215–219
CrossRef ADS Pubmed Google scholar
[45]
Abdul Majid MA, Mahboob T, Mong BGJ, Jaturas N, Richard RL, Tian-Chye T, Phimphila A, Mahaphonh P, Aye KN, Aung WL, Chuah J, Ziegler AD, Yasiri A, Sawangjaroen N, Lim YAL, Nissapatorn V. Correction: Pathogenic waterborne free-living amoebae: an update from selected Southeast Asian countries. PLoS One 2017; 12(5): e0177564
CrossRef ADS Pubmed Google scholar
[46]
Bunsuwansakul C, Mahboob T, Hounkong K, Laohaprapanon S, Chitapornpan S, Jawjit S, Yasiri A, Barusrux S, Bunluepuech K, Sawangjaroen N, Salibay CC, Kaewjai C, Pereira ML, Nissapatorn V. Acanthamoeba in Southeast Asia—overview and challenges. Korean J Parasitol 2019; 57(4): 341–357
CrossRef ADS Pubmed Google scholar
[47]
Visvesvara GS, Stehr-Green JK. Epidemiology of free-living ameba infections. J Protozool 1990; 37(4): 25S–33S
CrossRef ADS Pubmed Google scholar
[48]
Alexeieff A. Sur les charactères cytologiques et la systématique des amibes du groupe limax (Naegleria nov. gen. et Hartmannia nov. gen.) et des amibes parasites des vertebrates (Protamoeba nov. gen.). Bull Soc Zool Fr 1912; 37: 55–74
CrossRef ADS Google scholar
[49]
Fowler M, Carter RF. Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report. Br Med J 1965; 2(5464): 740–742
Pubmed
[50]
Gharpure R, Bliton J, Goodman A, Ali IKM, Yoder J, Cope JR. Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by Naegleria fowleri: a global review. Clin Infect Dis 2021; 73(1): e19–e27
Pubmed
[51]
Maciver SK, Piñero JE, Lorenzo-Morales J. Is Naegleria fowleri an emerging parasite? Trends Parasitol 2020; 36(1): 19–28
CrossRef ADS Pubmed Google scholar
[52]
Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, Wittwer M. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics 2014; 15(1): 496
CrossRef ADS Pubmed Google scholar
[53]
Liechti N, Schürch N, Bruggmann R, Wittwer M. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Rep 2019; 9(1): 16040
CrossRef ADS Pubmed Google scholar
[54]
De Jonckheere JF. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect Genet Evol 2011; 11(7): 1520–1528
CrossRef ADS Pubmed Google scholar
[55]
Coupat-Goutaland B, Régoudis E, Besseyrias M, Mularoni A, Binet M, Herbelin P, Pélandakis M. Population structure in Naegleria fowleri as revealed by microsatellite markers. PLoS One 2016; 11(4): e0152434
CrossRef ADS Pubmed Google scholar
[56]
De Jonckheere JF. What do we know by now about the genus Naegleria? Exp Parasitol 2014; 145(Suppl): S2–S9
CrossRef ADS Pubmed Google scholar
[57]
Sazzad HMS, Luby SP, Sejvar J, Rahman M, Gurley ES, Hill V, Murphy JL, Roy S, Cope JR, Ali IKM. A case of primary amebic meningoencephalitis caused by Naegleria fowleri in Bangladesh. Parasitol Res 2020; 119(1): 339–344
CrossRef ADS Pubmed Google scholar
[58]
Yoder JS, Eddy BA, Visvesvara GS, Capewell L, Beach MJ. The epidemiology of primary amoebic meningoencephalitis in the USA, 1962–2008. Epidemiol Infect 2010; 138(7): 968–975
CrossRef ADS Pubmed Google scholar
[59]
Martinez J, Duma RJ, Nelson EC, Moretta FL. Experimental naegleria meningoencephalitis in mice. Penetration of the olfactory mucosal epithelium by Naegleria and pathologic changes produced: a light and electron microscope study. Lab Invest 1973; 29(2): 121–133
Pubmed
[60]
Jarolim KL, McCosh JK, Howard MJ, John DT. A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol 2000; 86(1): 50–55
CrossRef ADS Pubmed Google scholar
[61]
Rojas-Hernández S, Jarillo-Luna A, Rodríguez-Monroy M, Moreno-Fierros L, Campos-Rodríguez R. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res 2004; 94(1): 31–36
CrossRef ADS Pubmed Google scholar
[62]
Marciano-Cabral F, Cabral GA. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunol Med Microbiol 2007; 51(2): 243–259
CrossRef ADS Pubmed Google scholar
[63]
Moseman EA. Battling brain-eating amoeba: enigmas surrounding immunity to Naegleria fowleri. PLoS Pathog 2020; 16(4): e1008406
CrossRef ADS Pubmed Google scholar
[64]
Lawande RV, John I, Dobbs RH, Egler LJ. A case of primary amebic meningoencephalitis in Zaria, Nigeria. Am J Clin Pathol 1979; 71(5): 591–594
CrossRef ADS Pubmed Google scholar
[65]
Siddiqui R, Ali IKM, Cope JR, Khan NA. Biology and pathogenesis of Naegleria fowleri. Acta Trop 2016; 164: 375–394
CrossRef ADS Pubmed Google scholar
[66]
Marciano-Cabral FM, Patterson M, John DT, Bradley SG. Cytopathogenicity of Naegleria fowleri and Naegleria gruberi for established mammalian cell cultures. J Parasitol 1982; 68(6): 1110–1116
CrossRef ADS Pubmed Google scholar
[67]
Martínez-Castillo M, Cárdenas-Zúñiga R, Coronado-Velázquez D, Debnath A, Serrano-Luna J, Shibayama M. Naegleria fowleri after 50 years: is it a neglected pathogen? J Med Microbiol 2016; 65(9): 885–896
CrossRef ADS Pubmed Google scholar
[68]
Jamerson M, da Rocha-Azevedo B, Cabral GA, Marciano-Cabral F. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. Microbiology (Reading) 2012; 158(Pt 3): 791–803
CrossRef ADS Pubmed Google scholar
[69]
Han KL, Lee HJ, Shin MH, Shin HJ, Im KI, Park SJ. The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity. Parasitol Res 2004; 94(1): 53–60
CrossRef ADS Pubmed Google scholar
[70]
Flores-Huerta N, Sánchez-Monroy V, Rodríguez MA, Serrano-Luna J, Shibayama M. A comparative study of the membrane proteins from Naegleria species: a 23-kDa protein participates in the virulence of Naegleria fowleri. Eur J Protistol 2020; 72: 125640
CrossRef ADS Pubmed Google scholar
[71]
Cervantes-Sandoval I, Jesús Serrano-Luna J, Pacheco-Yépez J, Silva-Olivares A, Tsutsumi V, Shibayama M. Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates. Parasitol Res 2010; 106(3): 695–701
CrossRef ADS Pubmed Google scholar
[72]
Carrasco-Yepez M, Campos-Rodriguez R, Godinez-Victoria M, Rodriguez-Monroy MA, Jarillo-Luna A, Bonilla-Lemus P, De Oca AC, Rojas-Hernandez S. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa. Parasitol Res 2013; 112(10): 3615–3625
CrossRef ADS Pubmed Google scholar
[73]
Cervantes-Sandoval I, Serrano-Luna JJ, García-Latorre E, Tsutsumi V, Shibayama M. Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion. Microbiology (Reading) 2008; 154(Pt 12): 3895–3904
CrossRef ADS Pubmed Google scholar
[74]
Cervantes-Sandoval I, Serrano-Luna JJ, García-Latorre E, Tsutsumi V, Shibayama M. Characterization of brain inflammation during primary amoebic meningoencephalitis. Parasitol Int 2008; 57(3): 307–313
CrossRef ADS Pubmed Google scholar
[75]
Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem 2002; 277(25): 22353–22360
CrossRef ADS Pubmed Google scholar
[76]
Herbst R, Marciano-Cabral F, Leippe M. Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J Biol Chem 2004; 279(25): 25955–25958
CrossRef ADS Pubmed Google scholar
[77]
Chang SL. Pathogenesis of pathogenic Naegleria amoeba. Folia Parasitol (Praha) 1979; 26(3): 195–200
Pubmed
[78]
Hysmith RM, Franson RC. Elevated levels of cellular and extracellular phospholipases from pathogenic Naegleria fowleri. Biochim Biophys Acta 1982; 711(1): 26–32
CrossRef ADS Pubmed Google scholar
[79]
Eisen D, Franson RC. Acid-active neuraminidases in the growth media from cultures of pathogenic Naegleria fowleri and in sonicates of rabbit alveolar macrophages. Biochim Biophys Acta 1987; 924(2): 369–372
CrossRef ADS Pubmed Google scholar
[80]
Zyserman I, Mondal D, Sarabia F, McKerrow JH, Roush WR, Debnath A. Identification of cysteine protease inhibitors as new drug leads against Naegleria fowleri. Exp Parasitol 2018; 188: 36–41
CrossRef ADS Pubmed Google scholar
[81]
Song KJ, Jang YS, Lee YA, Kim KA, Lee SK, Shin MH. Reactive oxygen species-dependent necroptosis in Jurkat T cells induced by pathogenic free-living Naegleria fowleri. Parasite Immunol 2011; 33(7): 390–400
CrossRef ADS Pubmed Google scholar
[82]
Chávez-Munguía B, Villatoro LS, Omaña-Molina M, Rodríguez-Monroy MA, Segovia-Gamboa N, Martínez-Palomo A. Naegleria fowleri: contact-dependent secretion of electrondense granules (EDG). Exp Parasitol 2014; 142: 1–6
CrossRef ADS Pubmed Google scholar
[83]
Rojas-Hernández S, Rodríguez-Monroy MA, Moreno-Fierros L, Jarillo-Luna A, Carrasco-Yepez M, Miliar-García A, Campos-Rodríguez R. Nitric oxide production and nitric oxide synthase immunoreactivity in Naegleria fowleri. Parasitol Res 2007; 101(2): 269–274
CrossRef ADS Pubmed Google scholar
[84]
Fulton C. Intracellular regulation of cell shape and motility in Naegleria. First insights and a working hypothesis. J Supramol Struct 1977; 6(1): 13–43
CrossRef ADS Pubmed Google scholar
[85]
John DT, Cole TB Jr, Marciano-Cabral FM. Sucker-like structures on the pathogenic amoeba Naegleria fowleri. Appl Environ Microbiol 1984; 47(1): 12–14
CrossRef ADS Pubmed Google scholar
[86]
Tiewcharoen S, Rabablert J, Chetanachan P, Junnu V, Worawirounwong D, Malainual N. Scanning electron microscopic study of human neuroblastoma cells affected with Naegleria fowleri Thai strains. Parasitol Res 2008; 103(5): 1119–1123
CrossRef ADS Pubmed Google scholar
[87]
Shin HJ, Cho MS, Jung SU, Kim HI, Park S, Kim HJ, Im KI. Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri. J Eukaryot Microbiol 2001; 48(6): 713–717
CrossRef ADS Pubmed Google scholar
[88]
Kang SY, Song KJ, Jeong SR, Kim JH, Park S, Kim K, Kwon MH, Shin HJ. Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clin Diagn Lab Immunol 2005; 12(7): 873–876
Pubmed
[89]
Song KJ, Jeong SR, Park S, Kim K, Kwon MH, Im KI, Pak JH, Shin HJ. Naegleria fowleri: functional expression of the Nfa1 protein in transfected Naegleria gruberi by promoter modification. Exp Parasitol 2006; 112(2): 115–120
CrossRef ADS Pubmed Google scholar
[90]
Lee YJ, Kim JH, Jeong SR, Song KJ, Kim K, Park S, Park MS, Shin HJ. Production of Nfa1-specific monoclonal antibodies that influences the in vitro cytotoxicity of Naegleria fowleri trophozoites on microglial cells. Parasitol Res 2007; 101(5): 1191–1196
CrossRef ADS Pubmed Google scholar
[91]
Walsh CJ. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. Eur J Cell Biol 2007; 86(2): 85–98
CrossRef ADS Pubmed Google scholar
[92]
Sohn HJ, Song KJ, Kang H, Ham AJ, Lee JH, Chwae YJ, Kim K, Park S, Kim JH, Shin HJ. Cellular characterization of actin gene concerned with contact-dependent mechanisms in Naegleria fowleri. Parasite Immunol 2019; 41(8): e12631
CrossRef ADS Pubmed Google scholar
[93]
Dubray BL, Wilhelm WE, Jennings BR. Serology of Naegleria fowleri and Naegleria lovaniensis in a hospital survey. J Protozool 1987; 34(3): 322–327
CrossRef ADS Pubmed Google scholar
[94]
Cerva L. Acanthamoeba culbertsoni and Naegleria fowleri: occurrence of antibodies in man. J Hyg Epidemiol Microbiol Immunol 1989; 33(1): 99–103
Pubmed
[95]
Lee J, Kang JM, Kim TI, Kim JH, Sohn HJ, Na BK, Shin HJ. Excretory and secretory proteins of Naegleria fowleri induce inflammatory responses in BV-2 microglial cells. J Eukaryot Microbiol 2017; 64(2): 183–192
CrossRef ADS Pubmed Google scholar
[96]
Cervantes-Sandoval I, Serrano-Luna JJ, Meza-Cervantez P, Arroyo R, Tsutsumi V, Shibayama M. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation. Microbiology (Reading) 2009; 155(11): 3739–3747
CrossRef ADS Pubmed Google scholar
[97]
Martínez-Castillo M, Santos-Argumedo L, Galván-Moroyoqui JM, Serrano-Luna J, Shibayama M. Toll-like receptors participate in Naegleria fowleri recognition. Parasitol Res 2018; 117(1): 75–87
CrossRef ADS Pubmed Google scholar
[98]
Ferrante A, Mocatta TJ. Human neutrophils require activation by mononuclear leucocyte conditioned medium to kill the pathogenic free-living amoeba, Naegleria fowleri. Clin Exp Immunol 1984; 56(3): 559–566
Pubmed
[99]
Ferrante A, Thong YH. Unique phagocytic process in neutrophil-mediated killing of Naeglaria fowleri. Immunol Lett 1980; 2(1): 37–41
CrossRef ADS Google scholar
[100]
Holbrook TW, Boackle RJ, Parker BW, Vesely J. Activation of the alternative complement pathway by Naegleria fowleri. Infect Immun 1980; 30(1): 58–61
CrossRef ADS Pubmed Google scholar
[101]
Michelson MK, Henderson WR Jr, Chi EY, Fritsche TR, Klebanoff SJ. Ultrastructural studies on the effect of tumor necrosis factor on the interaction of neutrophils and Naegleria fowleri. Am J Trop Med Hyg 1990; 42(3): 225–233
CrossRef ADS Pubmed Google scholar
[102]
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191(3): 677–691
CrossRef ADS Pubmed Google scholar
[103]
Vyas IK, Jamerson M, Cabral GA, Marciano-Cabral F. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae. J Eukaryot Microbiol 2015; 62(1): 51–59
CrossRef ADS Pubmed Google scholar
[104]
Kim JH, Song AR, Sohn HJ, Lee J, Yoo JK, Kwon D, Shin HJ. IL-1β and IL-6 activate inflammatory responses of astrocytes against Naegleria fowleri infection via the modulation of MAPKs and AP-1. Parasite Immunol 2013; 35(3–4): 120–128
CrossRef ADS Pubmed Google scholar
[105]
Thong YH, Ferrante A, Shepherd C, Rowan-Kelly B. Resistance of mice to Naegleria meningoencephalitis transferred by immune serum. Trans R Soc Trop Med Hyg 1978; 72(6): 650–652
CrossRef ADS Pubmed Google scholar
[106]
Reilly MF, White KL Jr, Bradley SG. Host resistance of mice to Naegleria fowleri infections. Infect Immun 1983; 42(2): 645–652
CrossRef ADS Pubmed Google scholar
[107]
Reilly MF, Marciano-Cabral F, Bradley DW, Bradley SG. Agglutination of Naegleria fowleri and Naegleria gruberi by antibodies in human serum. J Clin Microbiol 1983; 17(4): 576–581
CrossRef ADS Pubmed Google scholar
[108]
Jarillo-Luna A, Moreno-Fierros L, Campos-Rodríguez R, Rodríguez-Monroy MA, Lara-Padilla E, Rojas-Hernández S. Intranasal immunization with Naegleria fowleri lysates and Cry1Ac induces metaplasia in the olfactory epithelium and increases IgA secretion. Parasite Immunol 2008; 30(1): 31–38
CrossRef ADS Pubmed Google scholar
[109]
Carrasco-Yepez M, Rojas-Hernandez S, Rodriguez-Monroy MA, Terrazas LI, Moreno-Fierros L. Protection against Naegleria fowleri infection in mice immunized with Cry1Ac plus amoebic lysates is dependent on the STAT6 Th2 response. Parasite Immunol 2010; 32(9–10): 664–670
Pubmed
[110]
Carrasco-Yepez M, Campos-Rodriguez R, Lopez-Reyes I, Bonilla-Lemus P, Rodriguez-Cortes AY, Contis-Montes de Oca A, Jarillo-Luna A, Miliar-Garcia A, Rojas-Hernandez S. Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis. Exp Parasitol 2014; 145(Suppl): S84–S92
CrossRef ADS Pubmed Google scholar
[111]
Ryu JS, Im KI. The production and characterization of anti-Naegleria fowleri monoclonal antibodies. Korean J Parasitol 1992; 30(1): 33–41
CrossRef ADS Pubmed Google scholar
[112]
Shibayama M, Serrano-Luna JJ, Rojas-Hernández S, Campos-Rodríguez R, Tsutsumi V. Interaction of secretory immunoglobulin A antibodies with Naegleria fowleri trophozoites and collagen type I. Can J Microbiol 2003; 49(3): 164–170
CrossRef ADS Pubmed Google scholar
[113]
Contis-Montes de Oca A, Carrasco-Yépez M, Campos-Rodríguez R, Pacheco-Yépez J, Bonilla-Lemus P, Pérez-López J, Rojas-Hernández S. Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG. Parasite Immunol 2016; 38(8): 481–495
CrossRef ADS Pubmed Google scholar
[114]
Carrasco-Yepez MM, Campos-Rodríguez R, Reséndiz-Albor AA, Peña-Juárez C, Contis-Montes de Oca A, Arciniega-Martínez IM, Bonilla-Lemus P, Rojas-Hernandez S. Naegleria fowleri immunization modifies lymphocytes and APC of nasal mucosa. Parasite Immunol 2018; 40(3): e12508
CrossRef ADS Pubmed Google scholar
[115]
Cursons RT, Brown TJ, Keys EA, Moriarty KM, Till D. Immunity to pathogenic free-living amoebae: role of cell-mediated immunity. Infect Immun 1980; 29(2): 408–410
CrossRef ADS Pubmed Google scholar
[116]
Toney DM, Marciano-Cabral F. Alterations in protein expression and complement resistance of pathogenic Naegleria amoebae. Infect Immun 1992; 60(7): 2784–2790
CrossRef ADS Pubmed Google scholar
[117]
Toney DM, Marciano-Cabral F. Modulation of complement resistance and virulence of Naegleria fowleri amoebae by alterations in growth media. J Eukaryot Microbiol 1994; 41(4): 337–343
CrossRef ADS Pubmed Google scholar
[118]
John DT. Primary amebic meningoencephalitis and the biology of Naegleria fowleri. Annu Rev Microbiol 1982; 36(1): 101–123
CrossRef ADS Pubmed Google scholar
[119]
Rivera-Aguilar V, Hernández-Martínez D, Rojas-Hernández S, Oliver-Aguillón G, Tsutsumi V, Herrera-González N, Campos-Rodríguez R. Immunoblot analysis of IgA antibodies to Naegleria fowleri in human saliva and serum. Parasitol Res 2000; 86(9): 775–780
CrossRef ADS Pubmed Google scholar
[120]
Baig AM. Pathogenesis of amoebic encephalitis: are the amoebae being credited to an ‘inside job’ done by the host immune response? Acta Trop 2015; 148: 72–76
CrossRef ADS Pubmed Google scholar
[121]
Thái TL, Kang JM, Lê HG, Lee J, Yoo WG, Shin HJ, Sohn WM, Na BK. Fowlerstefin, a cysteine protease inhibitor of Naegleria fowleri, induces inflammatory responses in BV-2 microglial cells in vitro. Parasit Vectors 2020; 13(1): 41
CrossRef ADS Pubmed Google scholar
[122]
Movahedi Z, Shokrollahi MR, Aghaali M, Heydari H. Primary amoebic meningoencephalitis in an Iranian infant. Case Rep Med 2012; 2012: 782854
CrossRef ADS Pubmed Google scholar
[123]
Mittal N, Mahajan L, Hussain Z, Gupta P, Khurana S. Primary amoebic meningoencephalitis in an infant. Indian J Med Microbiol 2019; 37(1): 120–122
CrossRef ADS Pubmed Google scholar
[124]
Schuster FL, Visvesvara GS. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 2004; 34(9): 1001–1027
CrossRef ADS Pubmed Google scholar
[125]
Zhang LL, Wu M, Hu BC, Chen HL, Pan JR, Ruan W, Yao LN. Identification and molecular typing of Naegleria fowleri from a patient with primary amebic meningoencephalitis in China. Int J Infect Dis 2018; 72: 28–33
CrossRef ADS Pubmed Google scholar
[126]
Harris GR, Batra R. Naegleria fowleri. N Engl J Med 2020; 383(11): 1057
CrossRef ADS Pubmed Google scholar
[127]
Chen M, Ruan W, Zhang L, Hu B, Yang X. Primary amebic meningoencephalitis: a case report. Korean J Parasitol 2019; 57(3): 291–294
CrossRef ADS Pubmed Google scholar
[128]
Capewell LG, Harris AM, Yoder JS, Cope JR, Eddy BA, Roy SL, Visvesvara GS, Fox LM, Beach MJ. Diagnosis, clinical course, and treatment of primary amoebic meningoencephalitis in the United States, 1937–2013. J Pediatric Infect Dis Soc 2015; 4(4): e68–e75
CrossRef ADS Pubmed Google scholar
[129]
Ong TYY, Khan NA, Siddiqui R. Brain-eating amoebae: predilection sites in the brain and disease outcome. J Clin Microbiol 2017; 55(7): 1989–1997
CrossRef ADS Pubmed Google scholar
[130]
Lopez-Corella E, De Leon B, de Jonckheere JF. Primary amebic meningoencephalitis caused by Naegleria fowleri in an adolescent from Huetamo, Michoacan, Mexico. Bol Méd Hosp Infant México 1989; 46(9): 619–622
[131]
Barnett ND, Kaplan AM, Hopkin RJ, Saubolle MA, Rudinsky MF. Primary amoebic meningoencephalitis with Naegleria fowleri: clinical review. Pediatr Neurol 1996; 15(3): 230–234
CrossRef ADS Pubmed Google scholar
[132]
Carter RF. Primary amoebic meningo-encephalitis. An appraisal of present knowledge. Trans R Soc Trop Med Hyg 1972; 66(2): 193–208
CrossRef ADS Pubmed Google scholar
[133]
Martinez AJ. Free-living amebas: natural history, prevention, diagnosis, pathology and treatment of disease. CRC Press, 1985
[134]
Sugita Y, Fujii T, Hayashi I, Aoki T, Yokoyama T, Morimatsu M, Fukuma T, Takamiya Y. Primary amebic meningoencephalitis due to Naegleria fowleri: an autopsy case in Japan. Pathol Int 1999; 49(5): 468–470
CrossRef ADS Pubmed Google scholar
[135]
Visvesvara GS. Infections with free-living amebae. Handb Clin Neurol 2013; 114: 153–168
CrossRef ADS Pubmed Google scholar
[136]
Hara T, Yagita K, Sugita Y. Pathogenic free-living amoebic encephalitis in Japan. Neuropathology 2019; 39(4): 251–258
CrossRef ADS Pubmed Google scholar
[137]
Lam AH, de Silva M, Procopis P, Kan A. Primary amoebic (Naegleria) meningoencephalitis. J Comput Assist Tomogr 1982; 6(3): 620–623
CrossRef ADS Pubmed Google scholar
[138]
Kidney DD, Kim SH. CNS infections with free-living amebas: neuroimaging findings. AJR Am J Roentgenol 1998; 171(3): 809–812
CrossRef ADS Pubmed Google scholar
[139]
da Rocha-Azevedo B, Tanowitz HB, Marciano-Cabral F. Diagnosis of infections caused by pathogenic free-living amoebae. Interdiscip Perspect Infect Dis 2009; 2009: 251406
CrossRef ADS Pubmed Google scholar
[140]
Hebbar S, Bairy I, Bhaskaranand N, Upadhyaya S, Sarma MS, Shetty AK. Fatal case of Naegleria fowleri meningo-encephalitis in an infant: case report. Ann Trop Paediatr 2005; 25(3): 223–226
CrossRef ADS Pubmed Google scholar
[141]
Centers for Disease Control and Prevention. Update on emerging infections: news from the Centers for Disease Control and Prevention. Primary amebic meningoencephalitis—Arizona, Florida, and Texas, 2007. Ann Emerg Med 2009; 54(3): 469–471
CrossRef ADS Pubmed Google scholar
[142]
Martinez AJ, Visvesvara GS. Laboratory diagnosis of pathogenic free-living amoebas: Naegleria, Acanthamoeba, and Leptomyxid. Clin Lab Med 1991; 11(4): 861–872
CrossRef ADS Pubmed Google scholar
[143]
Pugh JJ, Levy RA. Naegleria fowleri: diagnosis, pathophysiology of brain inflammation, and antimicrobial treatments. ACS Chem Neurosci 2016; 7(9): 1178–1179
CrossRef ADS Pubmed Google scholar
[144]
Centers for Disease Control and Prevention (CDC). Investigational drug available directly from CDC for the treatment of infections with free-living amebae. MMWR Morb Mortal Wkly Rep 2013; 62(33): 666
Pubmed
[145]
Visvesvara GS. Free-living amebae as opportunistic agents of human disease. J Neuroparasitology 2010; 1: 41–53
[146]
Visvesvara GS, Peralta MJ, Brandt FH, Wilson M, Aloisio C, Franko E. Production of monoclonal antibodies to Naegleria fowleri, agent of primary amebic meningoencephalitis. J Clin Microbiol 1987; 25(9): 1629–1634
CrossRef ADS Pubmed Google scholar
[147]
Behets J, Seghi F, Declerck P, Verelst L, Duvivier L, Van Damme A, Ollevier F. Detection of Naegleria spp. and Naegleria fowleri: a comparison of flagellation tests, ELISA and PCR. Water Sci Technol 2003; 47(3): 117–122
CrossRef ADS Pubmed Google scholar
[148]
Reveiller FL, Varenne MP, Pougnard C, Cabanes PA, Pringuez E, Pourima B, Legastelois S, Pernin P. An enzyme-linked immunosorbent assay (ELISA) for the identification of Naegleria fowleri in environmental water samples. J Eukaryot Microbiol 2003; 50(2): 109–113
CrossRef ADS Pubmed Google scholar
[149]
Lares-Jiménez LF, Borquez-Román MA, Alfaro-Sifuentes R, Meza-Montenegro MM, Casillas-Hernández R, Lares-Villa F. Detection of serum antibodies in children and adolescents against Balamuthia mandrillaris, Naegleria fowleri and Acanthamoeba T4. Exp Parasitol 2018; 189: 28–33
CrossRef ADS Pubmed Google scholar
[150]
Réveiller FL, Cabanes PA, Marciano-Cabral F. Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri. Parasitol Res 2002; 88(5): 443–450
CrossRef ADS Pubmed Google scholar
[151]
Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol 2006; 44(10): 3589–3595
CrossRef ADS Pubmed Google scholar
[152]
Hikal WM, Dkhil MA. Nested PCR assay for the rapid detection of Naegleria fowleri from swimming pools in Egypt. Acta Ecol Sin 2018; 38(2): 102–107
[153]
Schild M, Gianinazzi C, Gottstein B, Müller N. PCR-based diagnosis of Naegleria sp. infection in formalin-fixed and paraffin-embedded brain sections. J Clin Microbiol 2007; 45(2): 564–567
CrossRef ADS Pubmed Google scholar
[154]
Xue J, Caton K, Sherchan SP. Comparison of next-generation droplet digital PCR with quantitative PCR for enumeration of Naegleria fowleri in environmental water and clinical samples. Lett Appl Microbiol 2018; 67(4): 322–328
CrossRef ADS Pubmed Google scholar
[155]
Panda A, Mirdha BR, Rastogi N, Kasuhik S. Understanding the true burden of “Naegleria fowleri€” (Vahlkampfiidae) in patients from Northern states of India: source tracking and significance. Eur J Protistol 2020; 76: 125726
CrossRef ADS Pubmed Google scholar
[156]
Griffin JL. Temperature tolerance of pathogenic and nonpathogenic free-living amoebas. Science 1972; 178(4063): 869–870
CrossRef ADS Pubmed Google scholar
[157]
Gupta S, Das SR. Stock cultures of free-living amebas: effect of temperature on viability and pathogenicity. J Parasitol 1999; 85(1): 137–139
CrossRef ADS Pubmed Google scholar
[158]
Diaz J. Seasonal primary amebic meningoencephalitis (PAM) in the south: summertime is PAM time. J La State Med Soc 2012; 164(3): 148–150, 152–155
Pubmed
[159]
Cooper AM, Aouthmany S, Shah K, Rega PP. Killer amoebas: primary amoebic meningoencephalitis in a changing climate. JAAPA 2019; 32(6): 30–35
CrossRef ADS Pubmed Google scholar
[160]
Caruzo G, Cardozo J. Primary amoebic meningoencephalitis: a new case from Venezuela. Trop Doct 2008; 38(4): 256–257
CrossRef ADS Pubmed Google scholar
[161]
Lawande RV, Abraham SN, John I, Egler LJ. Recovery of soil Amebas from the nasal passages of children during the dusty harmattan period in Zaria. Am J Clin Pathol 1979; 71(2): 201–203
CrossRef ADS Pubmed Google scholar
[162]
Ugonabo JA, Gugnani HC. Nasal carriage of Naegleria fowleri and its environmental occurrence in Borno State, Nigeria. J Commun Dis 1989; 21(2): 111–113
Pubmed
[163]
Shenoy S, Wilson G, Prashanth HV, Vidyalakshmi K, Dhanashree B, Bharath R. Primary meningoencephalitis by Naegleria fowleri: first reported case from Mangalore, South India. J Clin Microbiol 2002; 40(1): 309–310
CrossRef ADS Pubmed Google scholar
[164]
Grace E, Asbill S, Virga K. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrob Agents Chemother 2015; 59(11): 6677–6681
CrossRef ADS Pubmed Google scholar
[165]
Goswick SM, Brenner GM. Activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob Agents Chemother 2003; 47(2): 524–528
CrossRef ADS Pubmed Google scholar
[166]
Kim JH, Jung SY, Lee YJ, Song KJ, Kwon D, Kim K, Park S, Im KI, Shin HJ. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri. Antimicrob Agents Chemother 2008; 52(11): 4010–4016
CrossRef ADS Pubmed Google scholar
[167]
Rice CA, Colon BL, Alp M, Göker H, Boykin DW, Kyle DE. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens. Antimicrob Agents Chemother 2015; 59(4): 2037–2044
CrossRef ADS Pubmed Google scholar
[168]
Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, Abagyan R, Nes WD, McKerrow JH, Podust LM. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis 2017; 11(12): e0006104
CrossRef ADS Pubmed Google scholar
[169]
Escrig JI, Hahn HJ, Debnath A. Activity of auranofin against multiple genotypes of Naegleria fowleri and its synergistic effect with amphotericin B in vitro. ACS Chem Neurosci 2020; 11(16): 2464–2471
CrossRef ADS Pubmed Google scholar
[170]
De Jonckheere JF. Isoenzyme and total protein-analysis by agarose isoelectric-focusing, and taxonomy of the genus Acanthamoeba. J Protozool 1983; 30(4): 701–706
CrossRef ADS Google scholar
[171]
Moura H, Wallace S, Visvesvara GS. Acanthamoeba healyi n. sp. and the isoenzyme and immunoblot profiles of Acanthamoeba spp., groups 1 and 3. J Protozool 1992; 39(5): 573–583
CrossRef ADS Pubmed Google scholar
[172]
Walochnik J, Sommer K, Obwaller A, Haller-Schober EM, Aspöck H. Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitol Res 2004; 92(4): 289–298
CrossRef ADS Pubmed Google scholar
[173]
Fuerst PA, Booton GC. Species, sequence types and alleles: dissecting genetic variation in Acanthamoeba. Pathogens 2020; 9(7): E534
CrossRef ADS Pubmed Google scholar
[174]
Walochnik J, Scheikl U, Haller-Schober EM. Twenty years of Acanthamoeba diagnostics in Austria. J Eukaryot Microbiol 2015; 62(1): 3–11
CrossRef ADS Pubmed Google scholar
[175]
Behera HS, Satpathy G, Tripathi M. Isolation and genotyping of Acanthamoeba spp. from Acanthamoeba meningitis/meningoencephalitis (AME) patients in India. Parasit Vectors 2016; 9(1): 442
CrossRef ADS Pubmed Google scholar
[176]
Khorsandi Rafsanjani M, Hajialilo E, Saraei M, Alizadeh SA, Javadi A. Isolation and molecular identification of Acanthamoeba and Naegleria from agricultural water canal in Qazvin, Iran. Iran J Parasitol 2020; 15(3): 393–402
Pubmed
[177]
Willaert E, Stevens AR, Tyndall RL. Acanthamoeba royreba sp. n. from a human tumor cell culture. J Protozool 1978; 25(1): 1–14
CrossRef ADS Pubmed Google scholar
[178]
Daggett PM, Lipscomb D, Sawyer TK, Nerad TA. A molecular approach to the phylogeny of Acanthamoeba. Biosystems 1985; 18(3–4): 399–405
CrossRef ADS Pubmed Google scholar
[179]
Gardner HA, Martinez AJ, Visvesvara GS, Sotrel A. Granulomatous amebic encephalitis in an AIDS patient. Neurology 1991; 41(12): 1993–1995
CrossRef ADS Pubmed Google scholar
[180]
Di Gregorio C, Rivasi F, Mongiardo N, De Rienzo B, Wallace S, Visvesvara GS. Acanthamoeba meningoencephalitis in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 1992; 116(12): 1363–1365
Pubmed
[181]
Chung DI, Kong HH, Kim TH, Hwang MY, Yu HS, Yun HC, Seol SY. Bacterial endosymbiosis within the cytoplasm of Acanthamoeba lugdunensis isolated from a contact lens storage case. Korean J Parasitol 1997; 35(2): 127–133
CrossRef ADS Pubmed Google scholar
[182]
Faude F, Sünnemann S, Retzlaff C, Meier T, Wiedemann P. Therapy refractory keratitis. Contact lens-induced keratitis caused by Acanthamoeba palestinensis. Ophthalmologe 1997; 94(6): 448–449
Pubmed
[183]
García MT, Jones S, Pelaz C, Millar RD, Abu Kwaik Y. Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol 2007; 9(5): 1267–1277
CrossRef ADS Pubmed Google scholar
[184]
Qvarnstrom Y, Nerad TA, Visvesvara GS. Characterization of a new pathogenic Acanthamoeba species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. J Eukaryot Microbiol 2013; 60(6): 626–633
CrossRef ADS Pubmed Google scholar
[185]
van Zyl LM, Andrew N, Chehade M, Sadlon TA, Badenoch PR. Acanthamoeba lenticulata keratitis in a hard contact lens wearer. Clin Exp Ophthalmol 2013; 41(8): 810–812
CrossRef ADS Pubmed Google scholar
[186]
González-Robles A, Omaña-Molina M, Salazar-Villatoro L, Flores-Maldonado C, Lorenzo-Morales J, Reyes-Batlle M, Arnalich-Montiel F, Martínez-Palomo A. Acanthamoeba culbertsoni isolated from a clinical case with intraocular dissemination: structure and in vitro analysis of the interaction with hamster cornea and MDCK epithelial cell monolayers. Exp Parasitol 2017; 183: 245–253
CrossRef ADS Pubmed Google scholar
[187]
Wu D, Qiao K, Feng M, Fu Y, Cai J, Deng Y, Tachibana H, Cheng X. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J Eukaryot Microbiol 2018; 65(2): 191–199
CrossRef ADS Pubmed Google scholar
[188]
Ezz Eldin HM, Sarhan RM, Khayyal AE. The impact of vinegar on pathogenic Acanthamoeba astronyxis isolate. J Parasit Dis 2019; 43(3): 351–359
CrossRef ADS Pubmed Google scholar
[189]
Singh A, Acharya M, Jose N, Gandhi A, Sharma S. 18S rDNA sequencing aided diagnosis of Acanthamoeba jacobsi keratitis—a case report. Indian J Ophthalmol 2019; 67(11): 1886–1888
CrossRef ADS Pubmed Google scholar
[190]
Ávila-Blanco ME, Martín-Pérez T, Ventura-Juárez J, Pérez-Serrano J. Experimental keratitis in rats caused by Acanthamoeba griffini: a kinetic histopathological study. Parasite Immunol 2020; 42(3): e12692
CrossRef ADS Pubmed Google scholar
[191]
Hasni I, Andréani J, Colson P, La Scola B. Description of virulent factors and horizontal gene transfers of keratitis-associated amoeba Acanthamoeba triangularis by genome analysis. Pathogens 2020; 9(3): E217
CrossRef ADS Pubmed Google scholar
[192]
Roshni Prithiviraj S, Rajapandian SGK, Gnanam H, Gunasekaran R, Mariappan P, Sankalp Singh S, Prajna L. Clinical presentations, genotypic diversity and phylogenetic analysis of Acanthamoeba species causing keratitis. J Med Microbiol 2020; 69(1): 87–95
CrossRef ADS Pubmed Google scholar
[193]
Anzil AP, Rao C, Wrzolek MA, Visvesvara GS, Sher JH, Kozlowski PB. Amebic meningoencephalitis in a patient with AIDS caused by a newly recognized opportunistic pathogen. Leptomyxid ameba. Arch Pathol Lab Med 1991; 115(1): 21–25
Pubmed
[194]
Gordon SM, Steinberg JP, DuPuis MH, Kozarsky PE, Nickerson JF, Visvesvara GS. Culture isolation of Acanthamoeba species and leptomyxid amebas from patients with amebic meningoencephalitis, including two patients with AIDS. Clin Infect Dis 1992; 15(6): 1024–1030
CrossRef ADS Pubmed Google scholar
[195]
Griesemer DA, Barton LL, Reese CM, Johnson PC, Gabrielsen JA, Talwar D, Visvesvara GS. Amebic meningoencephalitis caused by Balamuthia mandrillaris. Pediatr Neurol 1994; 10(3): 249–254
CrossRef ADS Pubmed Google scholar
[196]
Niyyati M, Lorenzo-Morales J, Rezaeian M, Martin-Navarro CM, Haghi AM, Maciver SK, Valladares B. Isolation of Balamuthia mandrillaris from urban dust, free of known infectious involvement. Parasitol Res 2009; 106(1): 279–281
CrossRef ADS Pubmed Google scholar
[197]
Cabello-Vílchez AM, Reyes-Batlle M, Montalbán-Sandoval E, Martín-Navarro CM, López-Arencibia A, Elias-Letts R, Guerra H, Gotuzzo E, Martínez-Carretero E, Piñero JE, Maciver SK, Valladares B, Lorenzo-Morales J. The isolation of Balamuthia mandrillaris from environmental sources from Peru. Parasitol Res 2014; 113(7): 2509–2513
CrossRef ADS Pubmed Google scholar
[198]
Latifi AR, Niyyati M, Lorenzo-Morales J, Haghighi A, Seyyed Tabaei SJ, Lasjerdi Z. Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, northern Iran. Epidemiol Infect 2016; 144(11): 2456–2461
CrossRef ADS Pubmed Google scholar
[199]
Visvesvara GS, Martinez AJ, Schuster FL, Leitch GJ, Wallace SV, Sawyer TK, Anderson M. Leptomyxid ameba, a new agent of amebic meningoencephalitis in humans and animals. J Clin Microbiol 1990; 28(12): 2750–2756
CrossRef ADS Pubmed Google scholar
[200]
Kinde H, Visvesvara GS, Barr BC, Nordhausen RW, Chiu PHW. Amebic meningoencephalitis caused by Balamuthia mandrillaris (leptomyxid ameba) in a horse. J Vet Diagn Invest 1998; 10(4): 378–381
CrossRef ADS Pubmed Google scholar
[201]
Finnin PJ, Visvesvara GS, Campbell BE, Fry DR, Gasser RB. Multifocal Balamuthia mandrillaris infection in a dog in Australia. Parasitol Res 2007; 100(2): 423–426
CrossRef ADS Pubmed Google scholar
[202]
Hodge PJ, Kelers K, Gasser RB, Visvesvara GS, Martig S, Long SN. Another case of canine amoebic meningoencephalitis—the challenges of reaching a rapid diagnosis. Parasitol Res 2011; 108(4): 1069–1073
CrossRef ADS Pubmed Google scholar
[203]
Booton GC, Carmichael JR, Visvesvara GS, Byers TJ, Fuerst PA. Genotyping of Balamuthia mandrillaris based on nuclear 18S and mitochondrial 16S rRNA genes. Am J Trop Med Hyg 2003; 68(1): 65–69
CrossRef ADS Pubmed Google scholar
[204]
Lares-Jiménez LF, Booton GC, Lares-Villa F, Velázquez-Contreras CA, Fuerst PA. Genetic analysis among environmental strains of Balamuthia mandrillaris recovered from an artificial lagoon and from soil in Sonora, Mexico. Exp Parasitol 2014; 145(Suppl): S57–S61
CrossRef ADS Pubmed Google scholar
[205]
Kucerova Z, Sriram R, Wilkins PP, Visvesvara GS. Identification of antigenic targets for immunodetection of Balamuthia mandrillaris infection. Clin Vaccine Immunol 2011; 18(8): 1297–1301
CrossRef ADS Pubmed Google scholar
[206]
Martínez AJ. Is Acanthamoeba encephalitis an opportunistic infection? Neurology 1980; 30(6): 567–574
CrossRef ADS Pubmed Google scholar
[207]
Lackner P, Beer R, Broessner G, Helbok R, Pfausler B, Brenneis C, Auer H, Walochnik J, Schmutzhard E. Acute granulomatous acanthamoeba encephalitis in an immunocompetent patient. Neurocrit Care 2010; 12(1): 91–94
CrossRef ADS Pubmed Google scholar
[208]
Cope JR, Landa J, Nethercut H, Collier SA, Glaser C, Moser M, Puttagunta R, Yoder JS, Ali IK, Roy SL. The epidemiology and clinical features of Balamuthia mandrillaris disease in the United States, 1974–2016. Clin Infect Dis 2019; 68(11): 1815–1822
CrossRef ADS Pubmed Google scholar
[209]
Wu X, Yan G, Han S, Ye Y, Cheng X, Gong H, Yu H. Diagnosing Balamuthia mandrillaris encephalitis via next-generation sequencing in a 13-year-old girl. Emerg Microbes Infect 2020; 9(1): 1379–1387
CrossRef ADS Pubmed Google scholar
[210]
Kiderlen AF, Laube U, Radam E, Tata PS. Oral infection of immunocompetent and immunodeficient mice with Balamuthia mandrillaris amebae. Parasitol Res 2007; 100(4): 775–782
CrossRef ADS Pubmed Google scholar
[211]
Yera H, Dupouy-Camet J, Jackson JW, Sriram R, Sweat S, Goldstein JM, Visvesvara GS. In vitro growth, cytopathic effects and clearance of monolayers by clinical isolates of Balamuthia mandrillaris in human skin cell cultures. Exp Parasitol 2015; 156: 61–67
CrossRef ADS Pubmed Google scholar
[212]
Gupte AA, Hocevar SN, Lea AS, Kulkarni RD, Schain DC, Casey MJ, Zendejas-Ruiz IR, Chung WK, Mbaeyi C, Roy SL, Visvesvara GS, da Silva AJ, Tallaj J, Eckhoff D, Baddley JW. Transmission of Balamuthia mandrillaris through solid organ transplantation: utility of organ recipient serology to guide clinical management. Am J Transplant 2014; 14(6): 1417–1424
CrossRef ADS Pubmed Google scholar
[213]
Farnon EC, Kokko KE, Budge PJ, Mbaeyi C, Lutterloh EC, Qvarnstrom Y, da Silva AJ, Shieh WJ, Roy SL, Paddock CD, Sriram R, Zaki SR, Visvesvara GS, Kuehnert MJ, Balamuthia Transplant Investigation Teams; Weiss J, Komatsu K, Manch R, Ramos A, Echeverria L, Moore A, Zakowski P, Kittleson M, Kobashigawa J, Yoder J, Beach M, Mahle W, Kanter K, Geraghty PJ, Navarro E, Hahn C, Fujita S, Stinson J, Trachtenberg J, Byers P, Cheung M, Jie T, Kaplan B, Gruessner R, Bracamonte E, Viscusi C, Gonzalez-Peralta R, Lawrence R, Fratkin J, Butt F. Transmission of Balamuthia mandrillaris by organ transplantation. Clin Infect Dis 2016; 63(7): 878–888
CrossRef ADS Pubmed Google scholar
[214]
Kot K, Łanocha-Arendarczyk NA, Kosik-Bogacka DI. Amoebas from the genus Acanthamoeba and their pathogenic properties. Ann Parasitol 2018; 64(4): 299–308
Pubmed
[215]
Martínez AJ, Schuster FL, Visvesvara GS. Balamuthia mandrillaris: its pathogenic potential. J Eukaryot Microbiol 2001; 48(Suppl): 6S–9S
CrossRef ADS Pubmed Google scholar
[216]
Kiderlen AF, Laube U. Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway. Parasitol Res 2004; 94(1): 49–52
CrossRef ADS Pubmed Google scholar
[217]
Matin A, Siddiqui R, Jayasekera S, Khan NA. Increasing importance of Balamuthia mandrillaris. Clin Microbiol Rev 2008; 21(3): 435–448
CrossRef ADS Pubmed Google scholar
[218]
Nielsen SE, Ivarsen A, Hjortdal J. Increasing incidence of Acanthamoeba keratitis in a large tertiary ophthalmology department from year 1994 to 2018. Acta Ophthalmol 2020; 98(5): 445–448;
CrossRef ADS Pubmed Google scholar
[219]
Garajová M, Mrva M. Amoebae of the genus Acanthamoeba—causative agents of human infections. Epidemiol Mikrobiol Imunol 2011; 60(3): 121–130
Pubmed
[220]
Visvesvara GS. Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr Opin Infect Dis 2010; 23(6): 590–594
CrossRef ADS Pubmed Google scholar
[221]
Betanzos A, Bañuelos C, Orozco E. Host invasion by pathogenic amoebae: epithelial disruption by parasite proteins. Genes (Basel) 2019; 10(8): E618
CrossRef ADS Pubmed Google scholar
[222]
Khan NA. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 2006; 30(4): 564–595
CrossRef ADS Pubmed Google scholar
[223]
Serrano-Luna JJ, Cervantes-Sandoval I, Calderón J, Navarro-García F, Tsutsumi V, Shibayama M. Protease activities of Acanthamoeba polyphaga and Acanthamoeba castellanii. Can J Microbiol 2006; 52(1): 16–23
CrossRef ADS Pubmed Google scholar
[224]
Soto-Arredondo KJ, Flores-Villavicencio LL, Serrano-Luna JJ, Shibayama M, Sabanero-López M. Biochemical and cellular mechanisms regulating Acanthamoeba castellanii adherence to host cells. Parasitology 2014; 141(4): 531–541
CrossRef ADS Pubmed Google scholar
[225]
Castelan-Ramírez I, Salazar-Villatoro L, Chávez-Munguía B, Salinas-Lara C, Sánchez-Garibay C, Flores-Maldonado C, Hernández-Martínez D, Anaya-Martínez V, Ávila-Costa MR, Méndez-Cruz AR, Omaña-Molina M. Schwann cell autophagy and necrosis as mechanisms of cell death by Acanthamoeba. Pathogens 2020; 9(6): E458
CrossRef ADS Pubmed Google scholar
[226]
Cole TB, John DT. Effects of cytochalasin B on Naegleria fowleri amoebostomes. Proceedings, Annual Meeting, Electron Microscopy Society of America 1985; 43: 482–483
[227]
González-Robles A, González-Lázaro M, Omaña-Molina M, Martínez-Palomo A. Acanthamoeba castellanii: endocytic structures involved in the ingestion of diverse target elements. Acta Protozool 2009; 48(4): 329–334
[228]
Piña-Vázquez C, Reyes-López M, Ortíz-Estrada G, de la Garza M, Serrano-Luna J. Host-parasite interaction: parasite-derived and-induced proteases that degrade human extracellular matrix. J Parasitol Res 2012; 2012: 748206
CrossRef ADS Pubmed Google scholar
[229]
Khan NA. Acanthamoeba and the blood-brain barrier: the breakthrough. J Med Microbiol 2008; 57(9): 1051–1057
CrossRef ADS Pubmed Google scholar
[230]
Khan NA, Siddiqui R. Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. Int J Parasitol 2009; 39(14): 1611–1616
CrossRef ADS Pubmed Google scholar
[231]
Coronado-Velázquez D, Betanzos A, Serrano-Luna J, Shibayama M. An in vitro model of the blood-brain barrier: Naegleria fowleri affects the tight junction proteins and activates the microvascular endothelial cells. J Eukaryot Microbiol 2018; 65(6): 804–819
CrossRef ADS Pubmed Google scholar
[232]
Siddiqui R, Emes R, Elsheikha H, Khan NA. Area 51: How do Acanthamoeba invade the central nervous system? Trends Parasitol 2011; 27(5): 185–189
CrossRef ADS Pubmed Google scholar
[233]
Chusattayanond AD, Boonsilp S, Kasisit J, Boonmee A, Warit S. Thai Acanthamoeba isolate (T4) induced apoptotic death in neuroblastoma cells via the Bax-mediated pathway. Parasitol Int 2010; 59(4): 512–516
CrossRef ADS Pubmed Google scholar
[234]
Huang JM, Chang YT, Lin WC. The biochemical and functional characterization of M28 aminopeptidase protein secreted by Acanthamoeba spp. on host cell interaction. Molecules 2019; 24(24): E4573
CrossRef ADS Pubmed Google scholar
[235]
Sissons J, Alsam S, Goldsworthy G, Lightfoot M, Jarroll EL, Khan NA. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol 2006; 6(1): 42
CrossRef ADS Pubmed Google scholar
[236]
Matin A, Siddiqui R, Jung SY, Kim KS, Stins M, Khan NA. Balamuthia mandrillaris interactions with human brain microvascular endothelial cells in vitro. J Med Microbiol 2007; 56(8): 1110–1115
CrossRef ADS Pubmed Google scholar
[237]
Siddiqui R, Khan NA. Balamuthia amoebic encephalitis: an emerging disease with fatal consequences. Microb Pathog 2008; 44(2): 89–97
CrossRef ADS Pubmed Google scholar
[238]
Matin A, Jeong SR, Stins M, Khan NA. Effects of human serum on Balamuthia mandrillaris interactions with human brain microvascular endothelial cells. J Med Microbiol 2007; 56(1): 30–35
CrossRef ADS Pubmed Google scholar
[239]
Siddiqui R, Khan NA. Balamuthia mandrillaris: morphology, biology, and virulence. Trop Parasitol 2015; 5(1): 15–22
CrossRef ADS Pubmed Google scholar
[240]
Jayasekera S, Matin A, Sissons J, Maghsood AH, Khan NA. Balamuthia mandrillaris stimulates interleukin-6 release in primary human brain microvascular endothelial cells via a phosphatidylinositol 3-kinase-dependent pathway. Microbes Infect 2005; 7(13): 1345–1351
CrossRef ADS Pubmed Google scholar
[241]
Rocha-Azevedo B, Jamerson M, Cabral GA, Silva-Filho FC, Marciano-Cabral F. The interaction between the amoeba Balamuthia mandrillaris and extracellular matrix glycoproteins in vitro. Parasitology 2007; 134(1): 51–58
CrossRef ADS Pubmed Google scholar
[242]
Matin A, Stins M, Kim KS, Khan NA. Balamuthia mandrillaris exhibits metalloprotease activities. FEMS Immunol Med Microbiol 2006; 47(1): 83–91
CrossRef ADS Pubmed Google scholar
[243]
Matin A, Khan NA. Demonstration and partial characterization of ecto-ATPase in Balamuthia mandrillaris and its possible role in the host-cell interactions. Lett Appl Microbiol 2008; 47(4): 348–354
CrossRef ADS Pubmed Google scholar
[244]
Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 2015; 22: 10
CrossRef ADS Pubmed Google scholar
[245]
Değerli S, Değerli N, Çamur D, Doğan Ö, İlter H. Genotyping by sequencing of Acanthamoeba and Naegleria isolates from the thermal pool distributed throughout Turkey. Acta Parasitol 2020; 65(1): 174–186
CrossRef ADS Pubmed Google scholar
[246]
Cursons RT, Brown TJ, Keys EA, Moriarty KM, Till D. Immunity to pathogenic free-living amoebae: role of humoral antibody. Infect Immun 1980; 29(2): 401–407
CrossRef ADS Pubmed Google scholar
[247]
Wojtkowiak-Giera A, Derda M, Kolasa-Wołosiuk A, Hadaś E, Kosik-Bogacka D, Solarczyk P, Jagodziński PP, Wandurska-Nowak E. Toll-like receptors in the brain of mice following infection with Acanthamoeba spp. Parasitol Res 2016; 115(11): 4335–4344
CrossRef ADS Pubmed Google scholar
[248]
Derda M, Wojtkowiak-Giera A, Kolasa-Wołosiuk A, Kosik-Bogacka D, Hadaś E, Jagodziński PP, Wandurska-Nowak E. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4). Exp Parasitol 2016; 165: 30–34
CrossRef ADS Pubmed Google scholar
[249]
Pumidonming W, Walochnik J, Dauber E, Petry F. Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology 2011; 216(1–2): 225–233
CrossRef ADS Pubmed Google scholar
[250]
Ferrante A, Rowan-Kelly B. Activation of the alternative pathway of complement by Acanthamoeba culbertsoni. Clin Exp Immunol 1983; 54(2): 477–485
Pubmed
[251]
Stewart GL, Shupe K, Kim I, Silvany RE, Alizadeh H, McCulley JP, Niederkorn JY. Antibody-dependent neutrophil-mediated killing of Acanthamoeba castellanii. Int J Parasitol 1994; 24(5): 739–742
CrossRef ADS Pubmed Google scholar
[252]
Marciano-Cabral F, Toney DM. The interaction of Acanthamoeba spp. with activated macrophages and with macrophage cell lines. J Eukaryot Microbiol 1998; 45(4): 452–458
CrossRef ADS Pubmed Google scholar
[253]
Benedetto N, Rossano F, Gorga F, Folgore A, Rao M, Romano Carratelli C. Defense mechanisms of IFN-γ and LPS-primed murine microglia against Acanthamoeba castellanii infection. Int Immunopharmacol 2003; 3(6): 825–834
CrossRef ADS Pubmed Google scholar
[254]
Mattana A, Sanna M, Cano A, Delogu G, Erre G, Roberts CW, Henriquez FL, Fiori PL, Cappuccinelli P. Acanthamoeba castellanii genotype T4 stimulates the production of interleukin-10 as well as proinflammatory cytokines in THP-1 cells, human peripheral blood mononuclear cells, and human monocyte-derived macrophages. Infect Immun 2016; 84(10): 2953–2962
CrossRef ADS Pubmed Google scholar
[255]
Cano A, Mattana A, Woods S, Henriquez FL, Alexander J, Roberts CW. Acanthamoeba activates macrophages predominantly through Toll-like receptor 4- and MyD88-dependent mechanisms to induce interleukin-12 (IL-12) and IL-6. Infect Immun 2017; 85(6): e01054-16
CrossRef ADS Pubmed Google scholar
[256]
Kim KH, Shin CO, Im K. Natural killer cell activity in mice infected with free-living amoeba with reference to their pathogenicity. Korean J Parasitol 1993; 31(3): 239–248
CrossRef ADS Pubmed Google scholar
[257]
Kim JY, Na BK, Song KJ, Park MH, Park YK, Kim TS. Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii. Parasitol Res 2012; 111(4): 1673–1682
CrossRef ADS Pubmed Google scholar
[258]
Huang ZH, Ferrante A, Carter RF. Serum antibodies to Balamuthia mandrillaris, a free-living amoeba recently demonstrated to cause granulomatous amoebic encephalitis. J Infect Dis 1999; 179(5): 1305–1308
CrossRef ADS Pubmed Google scholar
[259]
Schuster FL, Honarmand S, Visvesvara GS, Glaser CA. Detection of antibodies against free-living amoebae Balamuthia mandrillaris and Acanthamoeba species in a population of patients with encephalitis. Clin Infect Dis 2006; 42(9): 1260–1265
CrossRef ADS Pubmed Google scholar
[260]
Toney DM, Marciano-Cabral F. Resistance of Acanthamoeba species to complement lysis. J Parasitol 1998; 84(2): 338–344
CrossRef ADS Pubmed Google scholar
[261]
Jayasekera S, Sissons J, Tucker J, Rogers C, Nolder D, Warhurst D, Alsam S, White JML, Higgins EM, Khan NA. Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells. J Med Microbiol 2004; 53(10): 1007–1012
CrossRef ADS Pubmed Google scholar
[262]
Matin A, Nawaz S, Jung SY. Report: Effect of macrophage alone or primed with cytokines on Balamuthia mandrillaris interactions with human brain microvascular endothelial cells in vitro. Pak J Pharm Sci 2018; 31(6): 2553–2559
Pubmed
[263]
Guzmán-Téllez P, Martínez-Castillo M, Flores-Huerta N, Rosales-Morgan G, Pacheco-Yépez J, la Garza M, Serrano-Luna J, Shibayama M. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15(10): 919–936
CrossRef ADS Pubmed Google scholar
[264]
Robbins SL, Kumar V, Cotran RS. Robbins and Cotran Pathologic Basis of Disease. 8th ed. Philadelphia, PA: Saunders/Elsevier, 2010
[265]
Baig AM. Granulomatous amoebic encephalitis: ghost response of an immunocompromised host? J Med Microbiol 2014; 63(Pt 12): 1763–1766
CrossRef ADS Pubmed Google scholar
[266]
Lee DC, Fiester SE, Madeline LA, Fulcher JW, Ward ME, Schammel CM, Hakimi RK. Acanthamoeba spp. and Balamuthia mandrillaris leading to fatal granulomatous amebic encephalitis. Forensic Sci Med Pathol 2020; 16(1): 171–176
CrossRef ADS Pubmed Google scholar
[267]
Vernon SE, Acar BC, Pham SM, Fertel D. Acanthamoeba infection in lung transplantation: report of a case and review of the literature. Transpl Infect Dis 2005; 7(3–4): 154–157
CrossRef ADS Pubmed Google scholar
[268]
Duarte AG, Sattar F, Granwehr B, Aronson JF, Wang Z, Lick S. Disseminated acanthamoebiasis after lung transplantation. J Heart Lung Transplant 2006; 25(2): 237–240
CrossRef ADS Pubmed Google scholar
[269]
Schimmel M, Mehta I. Granulomatous amebic encephalitis. N Engl J Med 2020; 383(13): 1262
CrossRef ADS Pubmed Google scholar
[270]
Reddy R, Vijayasaradhi M, Uppin MS, Challa S, Jabeen A, Borghain R. Acanthamoeba meningoencephalitis in an immunocompetent patient: an autopsy case report. Neuropathology 2011; 31(2): 183–187
CrossRef ADS Pubmed Google scholar
[271]
Sütçü M, Aktürk H, Gülümser-Şişko S, Acar M, Erol OB, Somer A, Bilgiç B, Salman N. Granulomatous amebic encephalitis caused by Acanthamoeba in an immuncompetent child. Turk J Pediatr 2018; 60(3): 340–343
CrossRef ADS Pubmed Google scholar
[272]
Shehab KW, Aboul-Nasr K, Elliott SP. Balamuthia mandrillaris granulomatous amebic encephalitis with renal dissemination in a previously healthy child: case report and review of the pediatric literature. J Pediatric Infect Dis Soc 2018; 7(3): e163–e168
CrossRef ADS Pubmed Google scholar
[273]
Wang L, Cheng W, Li B, Jian Z, Qi X, Sun D, Gao J, Lu X, Yang Y, Lin K, Lu C, Chen J, Li C, Wang G, Gao T. Balamuthia mandrillaris infection in China: a retrospective report of 28 cases. Emerg Microbes Infect 2020; 9(1): 2348–2357
CrossRef ADS Pubmed Google scholar
[274]
Yang Y, Hu X, Min L, Dong X, Guan Y. Balamuthia mandrillaris-related primary amoebic encephalitis in China diagnosed by next generation sequencing and a review of the literature. Lab Med 2020; 51(2): e20–e26
Pubmed
[275]
Bravo FG, Alvarez PJ, Gotuzzo E. Balamuthia mandrillaris infection of the skin and central nervous system: an emerging disease of concern to many specialties in medicine. Curr Opin Infect Dis 2011; 24(2): 112–117
CrossRef ADS Pubmed Google scholar
[276]
Bravo FG, Seas C. Balamuthia mandrillaris amoebic encephalitis: an emerging parasitic infection. Curr Infect Dis Rep 2012; 14(4): 391–396
CrossRef ADS Pubmed Google scholar
[277]
Martinez AJ, Janitschke K. Acanthamoeba, an opportunistic microorganism: a review. Infection 1985; 13(6): 251–256
CrossRef ADS Pubmed Google scholar
[278]
Coven SL, Song E, Steward S, Pierson CR, Cope JR, Ali IK, Ardura MI, Hall MW, Chung MG, Bajwa RPS. Acanthamoeba granulomatous amoebic encephalitis after pediatric hematopoietic stem cell transplant. Pediatr Transplant 2017; 21(8): e13060
CrossRef ADS Pubmed Google scholar
[279]
Ghadage DP, Choure AC, Wankhade AB, Bhore AV. Opportunistic free: living amoeba now becoming a usual pathogen? Indian J Pathol Microbiol 2017; 60(4): 601–603
CrossRef ADS Pubmed Google scholar
[280]
The Editors. Balamuthia mandrillaris infection. J Med Microbiol 2001; 50(3): 205–207
CrossRef ADS Pubmed Google scholar
[281]
Schuster FL, Visvesvara GS. Opportunistic amoebae: challenges in prophylaxis and treatment. Drug Resist Updat 2004; 7(1): 41–51
CrossRef ADS Pubmed Google scholar
[282]
Pan D, Bridges LR, du Parcq J, Mahadeva U, Roy S, Ali IKM, Cosgrove CA, Chiodini PL, Zhang L. A rare cause of left-sided weakness in an elderly woman: amoebic encephalitis. Lancet 2020; 396(10244): e1
CrossRef ADS Pubmed Google scholar
[283]
Bravo FG. Cutaneous manifestations of infection by free-living amebas. In: Tyring SK. Tropical Dermatology. Philadelphia: Churchill Livingstone, 2006: 49–55
[284]
Kalra SK, Sharma P, Shyam K, Tejan N, Ghoshal U. Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp Parasitol 2020; 208: 107788
CrossRef ADS Pubmed Google scholar
[285]
Bakardjiev A, Azimi PH, Ashouri N, Ascher DP, Janner D, Schuster FL, Visvesvara GS, Glaser C. Amebic encephalitis caused by Balamuthia mandrillaris: report of four cases. Pediatr Infect Dis J 2003; 22(5): 447–452
CrossRef ADS Pubmed Google scholar
[286]
Seijo Martinez M, Gonzalez-Mediero G, Santiago P, Rodriguez De Lope A, Diz J, Conde C, Visvesvara GS. Granulomatous amebic encephalitis in a patient with AIDS: isolation of acanthamoeba sp. Group II from brain tissue and successful treatment with sulfadiazine and fluconazole. J Clin Microbiol 2000; 38(10): 3892–3895
CrossRef ADS Pubmed Google scholar
[287]
Thamtam VK, Uppin MS, Pyal A, Kaul S, Rani JY, Sundaram C. Fatal granulomatous amoebic encephalitis caused by Acanthamoeba in a newly diagnosed patient with systemic lupus erythematosus. Neurol India 2016; 64(1): 101–104
CrossRef ADS Pubmed Google scholar
[288]
Slater CA, Sickel JZ, Visvesvara GS, Pabico RC, Gaspari AA. Brief report: successful treatment of disseminated Acanthamoeba infection in an immunocompromised patient. N Engl J Med 1994; 331(2): 85–87
CrossRef ADS Pubmed Google scholar
[289]
Walia R, Montoya JG, Visvesvera GS, Booton GC, Doyle RL. A case of successful treatment of cutaneous Acanthamoeba infection in a lung transplant recipient. Transpl Infect Dis 2007; 9(1): 51–54
CrossRef ADS Pubmed Google scholar
[290]
Lorenzo-Morales J, Cabello-Vílchez AM, Martín-Navarro CM, Martínez-Carretero E, Piñero JE, Valladares B. Is Balamuthia mandrillaris a public health concern worldwide? Trends Parasitol 2013; 29(10): 483–488
CrossRef ADS Pubmed Google scholar
[291]
Sell JJ, Rupp FW, Orrison WW Jr. Granulomatous amebic encephalitis caused by acanthamoeba. Neuroradiology 1997; 39(6): 434–436
CrossRef ADS Pubmed Google scholar
[292]
Shirwadkar CG, Samant R, Sankhe M, Deshpande R, Yagi S, Schuster FL, Sriram R, Visvesvara GS. Acanthamoeba encephalitis in patient with systemic lupus, India. Emerg Infect Dis 2006; 12(6): 984–986
CrossRef ADS Pubmed Google scholar
[293]
Modica S, Miracco C, Cusi MG, Tordini G, Muzii VF, Iacoangeli F, Nocentini C, Ali IKM, Roy S, Cerase A, Zanelli G, De Luca A, Montagnani F. Non-granulomatous cerebellar infection by Acanthamoeba spp. in an immunocompetent host. Infection 2018; 46(6): 885–889
CrossRef ADS Pubmed Google scholar
[294]
Jung S, Schelper RL, Visvesvara GS, Chang HT. Balamuthia mandrillaris meningoencephalitis in an immunocompetent patient: an unusual clinical course and a favorable outcome. Arch Pathol Lab Med 2004; 128(4): 466–468
CrossRef ADS Pubmed Google scholar
[295]
Harrison WT, Lecky B, Hulette CM. Fatal granulomatous amebic encephalitis in a heart transplant patient: clinical, radiographic, and autopsy findings. J Neuropathol Exp Neurol 2018; 77(11): 1001–1004
CrossRef ADS Pubmed Google scholar
[296]
Parija SC, Dinoop K, Venugopal H. Management of granulomatous amebic encephalitis: laboratory diagnosis and treatment. Trop Parasitol 2015; 5(1): 23–28
CrossRef ADS Pubmed Google scholar
[297]
Williams JE. Diagnostic medical parasitology. Parasitol Today 1998; 14(3): 125–126
CrossRef ADS Pubmed Google scholar
[298]
Kang AY, Park AY, Shin HJ, Khan NA, Maciver SK, Jung SY. Production of a monoclonal antibody against a mannose-binding protein of Acanthamoeba culbertsoni and its localization. Exp Parasitol 2018; 192: 19–24
CrossRef ADS Pubmed Google scholar
[299]
Guarner J, Bartlett J, Shieh WJ, Paddock CD, Visvesvara GS, Zaki SR. Histopathologic spectrum and immunohistochemical diagnosis of amebic meningoencephalitis. Mod Pathol 2007; 20(12): 1230–1237
CrossRef ADS Pubmed Google scholar
[300]
Kiderlen AF, Radam E, Tata PS. Assessment of Balamuthia mandrillaris-specific serum antibody concentrations by flow cytometry. Parasitol Res 2009; 104(3): 663–670
CrossRef ADS Pubmed Google scholar
[301]
Kiderlen AF, Radam E, Schuster FL, Adjogoua EV, Akoua-Koffi C, Leendertz FH. Balamuthia and Acanthamoeba-binding antibodies in West African human sera. Exp Parasitol 2010; 126(1): 28–32
CrossRef ADS Pubmed Google scholar
[302]
Schuster FL. Cultivation of pathogenic and opportunistic free-living amebas. Clin Microbiol Rev 2002; 15(3): 342–354
CrossRef ADS Pubmed Google scholar
[303]
Kiderlen AF, Radam E, Lewin A. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene. BMC Microbiol 2008; 8(1): 210
CrossRef ADS Pubmed Google scholar
[304]
Yagi S, Booton GC, Visvesvara GS, Schuster FL. Detection of Balamuthia mitochondrial 16S rRNA gene DNA in clinical specimens by PCR. J Clin Microbiol 2005; 43(7): 3192–3197
CrossRef ADS Pubmed Google scholar
[305]
Gabriel S, Rasheed AK, Siddiqui R, Appaturi JN, Fen LB, Khan NA. Development of nanoparticle-assisted PCR assay in the rapid detection of brain-eating amoebae. Parasitol Res 2018; 117(6): 1801–1811
CrossRef ADS Pubmed Google scholar
[306]
Norgan AP, Sloan LM, Pritt BS. Detection of Naegleria fowleri, Acanthamoeba spp, and Balamuthia mandrillaris in formalin-fixed, paraffin-embedded tissues by real-time multiplex polymerase chain reaction. Am J Clin Pathol 2019; 152(6): 799–807
CrossRef ADS Pubmed Google scholar
[307]
Wilson MR, Shanbhag NM, Reid MJ, Singhal NS, Gelfand JM, Sample HA, Benkli B, O’Donovan BD, Ali IK, Keating MK, Dunnebacke TH, Wood MD, Bollen A, DeRisi JL. Diagnosing Balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol 2015; 78(5): 722–730
CrossRef ADS Pubmed Google scholar
[308]
Silva-Vergara ML, Da Cunha Colombo ER, De Figueiredo Vissotto E, Silva AC, Chica JE, Etchebehere RM, Adad SJ. Disseminated Balamuthia mandrillaris amoeba infection in an AIDS patient from Brazil. Am J Trop Med Hyg 2007; 77(6): 1096–1098
CrossRef ADS Pubmed Google scholar
[309]
Silva RA, Araújo SA, Avellar IF, Pittella JE, Oliveira JT, Christo PP. Granulomatous amoebic meningoencephalitis in an immunocompetent patient. Arch Neurol 2010; 67(12): 1516–1520
CrossRef ADS Pubmed Google scholar
[310]
Diaz JH. The public health threat from Balamuthia mandrillaris in the southern United States. J La State Med Soc 2011; 163(4): 197–204
Pubmed
[311]
Krasaelap A, Prechawit S, Chansaenroj J, Punyahotra P, Puthanakit T, Chomtho K, Shuangshoti S, Amornfa J, Poovorawan Y. Fatal Balamuthia amebic encephalitis in a healthy child: a case report with review of survival cases. Korean J Parasitol 2013; 51(3): 335–341
CrossRef ADS Pubmed Google scholar
[312]
Galarza M, Cuccia V, Sosa FP, Monges JA. Pediatric granulomatous cerebral amebiasis: a delayed diagnosis. Pediatr Neurol 2002; 26(2): 153–156
CrossRef ADS Pubmed Google scholar
[313]
Pindyck TN, Dvorscak LE, Hart BL, Palestine MD, Gallant JE, Allen SE, SantaCruz KS. Fatal granulomatous amebic encephalitis due to Balamuthia mandrillaris in New Mexico: a case report. Open Forum Infect Dis 2014; 1(2): ofu062
CrossRef ADS Pubmed Google scholar
[314]
Retana-Moreira L, Abrahams-Sandí E, Cabello-Vílchez AM, Reyes-Batlle M, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J. Isolation and molecular characterization of Acanthamoeba and Balamuthia mandrillaris from combination shower units in Costa Rica. Parasitol Res 2014; 113(11): 4117–4122
CrossRef ADS Pubmed Google scholar
[315]
Gabriel S, Khan NA, Siddiqui R. Occurrence of free-living amoebae (Acanthamoeba, Balamuthia, Naegleria) in water samples in Peninsular Malaysia. J Water Health 2019; 17(1): 160–171
CrossRef ADS Pubmed Google scholar
[316]
Mbaeyi C, Hlth CG. Notes From the Field: transplant-transmitted Balamuthia mandrillaris—Arizona, 2010 (Reprinted from MMWR, vol 59, pg 1182, 2010). JAMA 2011; 305(3): 249
[317]
DaSilvaNo author listed. Balamuthia mandrillaris transmitted through organ transplantation—Mississippi, 2009. Am J Transplant 2011; 11(1): 173–176
CrossRef ADS Google scholar
[318]
Schuster FL, Glaser C, Honarmand S, Maguire JH, Visvesvara GS. Balamuthia amebic encephalitis risk, Hispanic Americans. Emerg Infect Dis 2004; 10(8): 1510–1512
CrossRef ADS Pubmed Google scholar
[319]
Schuster FL, Guglielmo BJ, Visvesvara GS. In-vitro activity of miltefosine and voriconazole on clinical isolates of free-living amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri. J Eukaryot Microbiol 2006; 53(2): 121–126
CrossRef ADS Pubmed Google scholar
[320]
Doyle JS, Campbell E, Fuller A, Spelman DW, Cameron R, Malham G, Gin D, Lewin SR. Balamuthia mandrillaris brain abscess successfully treated with complete surgical excision and prolonged combination antimicrobial therapy. J Neurosurg 2011; 114(2): 458–462
CrossRef ADS Pubmed Google scholar
[321]
Siddiqui R, Aqeel Y, Khan NA. Killing the dead: chemotherapeutic strategies against free-living cyst-forming protists (Acanthamoeba sp. and Balamuthia mandrillaris). J Eukaryot Microbiol 2013; 60(3): 291–297
CrossRef ADS Pubmed Google scholar
[322]
Marciano-Cabral F, Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 2003; 16(2): 273–307
CrossRef ADS Pubmed Google scholar
[323]
Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL, Hartman BJ, Kaplan SL, Scheld WM, Whitley RJ; Infectious Diseases Society of America. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2008; 47(3): 303–327
CrossRef ADS Pubmed Google scholar
[324]
Cary LC, Maul E, Potter C, Wong P, Nelson PT, Given C 2nd, Robertson W Jr. Balamuthia mandrillaris meningoencephalitis: survival of a pediatric patient. Pediatrics 2010; 125(3): e699–e703
CrossRef ADS Pubmed Google scholar
[325]
Orozco L, Hanigan W, Khan M, Fratkin J, Lee M. Neurosurgical intervention in the diagnosis and treatment of Balamuthia mandrillaris encephalitis. J Neurosurg 2011; 115(3): 636–640
CrossRef ADS Pubmed Google scholar
[326]
Laurie MT, White CV, Retallack H, Wu W, Moser MS, Sakanari JA, Ang K, Wilson C, Arkin MR, DeRisi JL. Functional assessment of 2,177 U.S. and international drugs identifies the quinoline nitroxoline as a potent amoebicidal agent against the pathogen Balamuthia mandrillaris. MBio 2018; 9(5): e02051-18
CrossRef ADS Pubmed Google scholar
[327]
Deetz TR, Sawyer MH, Billman G, Schuster FL, Visvesvara GS. Successful treatment of Balamuthia amoebic encephalitis: presentation of 2 cases. Clin Infect Dis 2003; 37(10): 1304–1312
CrossRef ADS Pubmed Google scholar
[328]
Gondim BLC, da Silva Catarino J, de Sousa MAD, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, de Lima Nascimento TR, Machado JR, Rodrigues V, Oliveira CJF, Cançado Castellano LR, da Silva MV. Nanoparticle-mediated drug delivery: blood–brain barrier as the main obstacle to treating infectious diseases in CNS. Curr Pharm Des 2019; 25(37): 3983–3996
CrossRef ADS Pubmed Google scholar

Acknowledgements

We thank all members of our laboratory for their fruitful discussions and constructive suggestions. We are also grateful to Hiroshi Tachibana for the provision of information.

Compliance with ethics guidelines

Hongze Zhang and Xunjia Cheng declare no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.ƒ

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.ƒ
The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0

版权

2021 The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn
PDF(840 KB)

Accesses

Citation

Detail

段落导航
相关文章

/