
Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis
Frontiers of Medicine ›› 2020, Vol. 14 ›› Issue (1) : 51-59.
Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis
The aim of this study was to characterize rpoC gene mutations in Mycobacterium tuberculosis (MTB) and investigate the factors associated with rpoC mutations and the relation between rpoC mutations and tuberculosis (TB) transmission. A total of 245 MTB clinical isolates from patients with TB in six provinces and two municipalities in China were characterized based on gene mutations through DNA sequencing of rpoC and rpoB genes, phenotyping via standard drug susceptibility testing, and genotypic profiling by mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. Approximately 36.4% of the rifampin-resistant isolates harbored nonsynonymous mutations in the rpoC gene. Twenty-nine nonsynonymous single mutations and three double mutations were identified. The rpoC mutations at locus 483 (11.3%) were predominant, and the mutations at V483G, W484G, I491V, L516P, L566R, N698K, and A788E accounted for 54.5% of the total detected mutations. Fifteen new mutations in the rpoC gene were identified. Rifampin resistance and rpoB mutations at locus 531 were significantly associated with rpoC mutations. MIRU-VNTR genotype results indicated that 18.4% of the studied isolates were clustered, and the rpoC mutations were not significantly associated with MIRU-VNTR clusters. A large proportion of rpoC mutation was observed in the rifampicin-resistant MTB isolates. However, the findings of this study do not support the association of rpoC mutation with compensated transmissibility.
tuberculosis / drug resistance / compensatory mutations / transmission
[1] |
Yang C, Shen X, Peng Y, Lan R, Zhao Y, Long B, Luo T, Sun G, Li X, Qiao K, Gui X, Wu J, Xu J, Li F, Li D, Liu F, Shen M, Hong J, Mei J, DeRiemer K, Gao Q. Transmission of Mycobacterium tuberculosis in China: a population-based molecular epidemiologic study. Clin Infect Dis 2015; 61(2): 219–227
CrossRef
ADS
Pubmed
Google scholar
|
[2] |
Yang C, Luo T, Shen X, Wu J, Gan M, Xu P, Wu Z, Lin S, Tian J, Liu Q, Yuan Z, Mei J, DeRiemer K, Gao Q. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis 2017; 17(3): 275–284
CrossRef
ADS
Pubmed
Google scholar
|
[3] |
Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 2006; 312(5782): 1944–1946
CrossRef
ADS
Pubmed
Google scholar
|
[4] |
Mariam DH, Mengistu Y, Hoffner SE, Andersson DI. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48(4): 1289–1294
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
Knight GM, Colijn C, Shrestha S, Fofana M, Cobelens F, White RG, Dowdy DW, Cohen T. The distribution of fitness costs of resistance-conferring mutations is a key determinant for the future burden of drug-resistant tuberculosis: a model-based analysis. Clin Infect Dis 2015; 61(Suppl 3): S147–S154
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
Cohen T, Murray M. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 2004; 10(10): 1117–1121
CrossRef
ADS
Pubmed
Google scholar
|
[7] |
Blower SM, Chou T. Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance. Nat Med 2004; 10(10): 1111–1116
CrossRef
ADS
Pubmed
Google scholar
|
[8] |
Tang K, Sun H, Zhao Y, Guo J, Zhang C, Feng Q, He Y, Luo M, Li Y, Sun Q. Characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Sichuan in China. Tuberculosis (Edinb) 2013; 93(1): 89–95
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
Brandis G, Pietsch F, Alemayehu R, Hughes D. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2015; 70(3): 680–685
CrossRef
ADS
Pubmed
Google scholar
|
[10] |
Hughes D, Brandis G. Rifampicin resistance: fitness costs and the significance of compensatory evolution. Antibiotics (Basel) 2013; 2(2): 206–216
CrossRef
ADS
Pubmed
Google scholar
|
[11] |
Brandis G, Wrande M, Liljas L, Hughes D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 2012; 85(1): 142–151
CrossRef
ADS
Pubmed
Google scholar
|
[12] |
Maisnier-Patin S, Andersson DI. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol 2004; 155(5): 360–369
CrossRef
ADS
Pubmed
Google scholar
|
[13] |
Brandis G, Hughes D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J Antimicrob Chemother 2013; 68(11): 2493–2497
CrossRef
ADS
Pubmed
Google scholar
|
[14] |
de Vos M, Müller B, Borrell S, Black PA, van Helden PD, Warren RM, Gagneux S, Victor TC. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 2013; 57(2): 827–832
CrossRef
ADS
Pubmed
Google scholar
|
[15] |
Li QJ, Jiao WW, Yin QQ, Xu F, Li JQ, Sun L, Xiao J, Li YJ, Mokrousov I, Huang HR, Shen AD. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrob Agents Chemother 2016; 60(5): 2807–2812
CrossRef
ADS
Pubmed
Google scholar
|
[16] |
Liu Q, Zuo T, Xu P, Jiang Q, Wu J, Gan M, Yang C, Prakash R, Zhu G, Takiff HE, Gao Q. Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis? Emerg Microbes Infect 2018; 7(1): 98–105
CrossRef
ADS
Pubmed
Google scholar
|
[17] |
Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, Masala S, Domenech P, Zwerling A, Thibert L, Menzies D, Schwartzman K, Behr MA. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 2009; 47(4): 1119–1128
CrossRef
ADS
Pubmed
Google scholar
|
[18] |
Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 2006; 44(12): 4498–4510
CrossRef
ADS
Pubmed
Google scholar
|
[19] |
Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 2011; 44(1): 106–110
CrossRef
ADS
Pubmed
Google scholar
|
[20] |
Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni MR, Gardy JL, Johnston JC, Rodrigues M, Tang PK, Kato-Maeda M, Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J, Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 2013; 45(10): 1183–1189
CrossRef
ADS
Pubmed
Google scholar
|
[21] |
Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, Bentley SD, Parkhill J, Nejentsev S, Hoffner SE, Horstmann RD, Brown T, Drobniewski F. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res 2012; 22(4): 735–745
CrossRef
ADS
Pubmed
Google scholar
|
[22] |
Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, Corander J, Bryant J, Parkhill J, Nejentsev S, Horstmann RD, Brown T, Drobniewski F. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 2014; 46(3): 279–286
CrossRef
ADS
Pubmed
Google scholar
|
[23] |
Feng JY, Jarlsberg LG, Salcedo K, Rose J, Janes M, Lin SG, Osmond DH, Jost KC, Soehnlen MK, Flood J, Graviss EA, Desmond E, Moonan PK, Nahid P, Hopewell PC, Kato-Maeda M. Clinical and bacteriological characteristics associated with clustering of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2017; 21(7): 766–773
CrossRef
ADS
Pubmed
Google scholar
|
[24] |
Yun YJ, Lee JS, Yoo JC, Cho E, Park D, Kook YH, Lee KH. Patterns of rpoC mutations in drug-resistant Mycobacterium tuberculosis isolated from patients in South Korea. Tuberc Respir Dis (Seoul) 2018; 81(3): 222–227
CrossRef
ADS
Pubmed
Google scholar
|
[25] |
Levin BR, Perrot V, Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 2000; 154(3): 985–997
Pubmed
|
[26] |
Moura de Sousa J, Balbontín R, Durão P, Gordo I. Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biol 2017; 15(4): e2001741
CrossRef
ADS
Pubmed
Google scholar
|
[27] |
Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 2006; 312(5782): 1944–1946
CrossRef
ADS
Pubmed
Google scholar
|
[28] |
Gagneux S. Fitness cost of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 2009; 15(Suppl 1): 66–68
CrossRef
ADS
Pubmed
Google scholar
|
[29] |
Lane WJ, Darst SA. Molecular evolution of multisubunit RNA polymerases: structural analysis. J Mol Biol 2010; 395(4): 686–704
CrossRef
ADS
Pubmed
Google scholar
|
[30] |
Opalka N, Brown J, Lane WJ, Twist KA, Landick R, Asturias FJ, Darst SA. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol 2010; 8(9): e1000483
CrossRef
ADS
Pubmed
Google scholar
|
[31] |
Chen YY, Chang JR, Wu CD, Yeh YP, Yang SJ, Hsu CH, Lin MC, Tsai CF, Lin MS, Su IJ, Dou HY. Combining molecular typing and spatial pattern analysis to identify areas of high tuberculosis transmission in a moderate-incidence county in Taiwan. Sci Rep 2017; 7(1): 5394
CrossRef
ADS
Pubmed
Google scholar
|
[32] |
Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health 2018; 11(5): 605–610
CrossRef
ADS
Pubmed
Google scholar
|
/
〈 |
|
〉 |