Mechanisms and impacts of chromosomal translocations in cancers

Frontiers of Medicine ›› 2012, Vol. 6 ›› Issue (3) : 263-274.

PDF(276 KB)
PDF(276 KB)
Frontiers of Medicine ›› 2012, Vol. 6 ›› Issue (3) : 263-274. DOI: 10.1007/s11684-012-0215-5
REVIEW
REVIEW

Mechanisms and impacts of chromosomal translocations in cancers

作者信息 +

Mechanisms and impacts of chromosomal translocations in cancers

Author information +
History +

Abstract

Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago. Chromosomal translocations, a type of particular structural changes involving heterologous chromosomes, have made a critical impact on diagnosis, prognosis and treatment of cancers. For example, the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia. In the past few decades, tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations. This review focuses on the basic mechanisms underlying the generation of chromosomal translocations. In particular, the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci is discussed.

Keywords

DNA double strand breaks / chromosomal translocations / genomic instability / spatial proximity / carcinogenesis

引用本文

导出引用
. . Frontiers of Medicine. 2012, 6(3): 263-274 https://doi.org/10.1007/s11684-012-0215-5

参考文献

[1]
BalmainA. Cancer genetics: from Boveri and Mendel to microarrays. Nat Rev Cancer2001; 1(1): 77–82
CrossRef ADS Pubmed Google scholar
[2]
RowleyJD. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer2001; 1(3): 245–250
CrossRef ADS Pubmed Google scholar
[3]
LevanA. Some current problems of cancer cytogenetics. Hereditas1967; 57(3): 343–355
CrossRef ADS Pubmed Google scholar
[4]
MitelmanF, JohanssonB, MertensF. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer2007; 7(4): 233–245
CrossRef ADS Pubmed Google scholar
[5]
StrattonMR. Exploring the genomes of cancer cells: progress and promise. Science2011; 331(6024): 1553–1558
CrossRef ADS Pubmed Google scholar
[6]
StrattonMR, CampbellPJ, FutrealPA. The cancer genome. Nature2009; 458(7239): 719–724
CrossRef ADS Pubmed Google scholar
[7]
NegriniS, GorgoulisVG, HalazonetisTD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol2010; 11(3): 220–228
CrossRef ADS Pubmed Google scholar
[8]
PleasanceED, CheethamRK, StephensPJ, McBrideDJ, HumphraySJ, GreenmanCD, VarelaI, LinML, OrdóñezGR, BignellGR, YeK, AlipazJ, BauerMJ, BeareD, ButlerA, CarterRJ, ChenL, CoxAJ, EdkinsS, Kokko-GonzalesPI, GormleyNA, GrocockRJ, HaudenschildCD, HimsMM, JamesT, JiaM, KingsburyZ, LeroyC, MarshallJ, MenziesA, MudieLJ, NingZ, RoyceT, Schulz-TrieglaffOB, SpiridouA, StebbingsLA, SzajkowskiL, TeagueJ, WilliamsonD, ChinL, RossMT, CampbellPJ, BentleyDR, FutrealPA, StrattonMR. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature2010; 463(7278): 191–196
CrossRef ADS Pubmed Google scholar
[9]
PleasanceED, StephensPJ, O’MearaS, McBrideDJ, MeynertA, JonesD, LinML, BeareD, LauKW, GreenmanC, VarelaI, Nik-ZainalS, DaviesHR, OrdoñezGR, MudieLJ, LatimerC, EdkinsS, StebbingsL, ChenL, JiaM, LeroyC, MarshallJ, MenziesA, ButlerA, TeagueJW, MangionJ, SunYA, McLaughlinSF, PeckhamHE, TsungEF, CostaGL, LeeCC, MinnaJD, GazdarA, BirneyE, RhodesMD, McKernanKJ, StrattonMR, FutrealPA, CampbellPJ. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature2010; 463(7278): 184–190
CrossRef ADS Pubmed Google scholar
[10]
StephensPJ, McBrideDJ, LinML, VarelaI, PleasanceED, SimpsonJT, StebbingsLA, LeroyC, EdkinsS, MudieLJ, GreenmanCD, JiaM, LatimerC, TeagueJW, LauKW, BurtonJ, QuailMA, SwerdlowH, ChurcherC, NatrajanR, SieuwertsAM, MartensJW, SilverDP, LangerødA, RussnesHE, FoekensJA, Reis-FilhoJS, van’t VeerL, RichardsonAL, Børresen-DaleAL, CampbellPJ, FutrealPA, StrattonMR. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature2009; 462(7276): 1005–1010
CrossRef ADS Pubmed Google scholar
[11]
NowellPC, HungerfordDA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst1960; 25: 85–109
Pubmed
[12]
NowellPC, RowleyJD, KnudsonAG Jr. Cancer genetics, cytogenetics—defining the enemy within. Nat Med1998; 4(10): 1107–1111
CrossRef ADS Pubmed Google scholar
[13]
RowleyJD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature1973; 243(5405): 290–293
CrossRef ADS Pubmed Google scholar
[14]
RowleyJD. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet1973; 16(2): 109–112
Pubmed
[15]
MorrisDS, TomlinsSA, MontieJE, ChinnaiyanAM. The discovery and application of gene fusions in prostate cancer. BJU Int2008; 102(3): 276–282
CrossRef ADS Pubmed Google scholar
[16]
ManoH. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci2008; 99(12): 2349–2355
CrossRef ADS Pubmed Google scholar
[17]
SodaM, ChoiYL, EnomotoM, TakadaS, YamashitaY, IshikawaS, FujiwaraS, WatanabeH, KurashinaK, HatanakaH, BandoM, OhnoS, IshikawaY, AburataniH, NikiT, SoharaY, SugiyamaY, ManoH. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature2007; 448(7153): 561–566
CrossRef ADS Pubmed Google scholar
[18]
GroffenJ, StephensonJR, HeisterkampN, de KleinA, BartramCR, GrosveldG. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell1984; 36(1): 93–99
CrossRef ADS Pubmed Google scholar
[19]
KurzrockR, KantarjianHM, DrukerBJ, TalpazM. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med2003; 138(10): 819–830
Pubmed
[20]
ShtivelmanE, LifshitzB, GaleRP, CanaaniE. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature1985; 315(6020): 550–554
CrossRef ADS Pubmed Google scholar
[21]
ForoniL, GerrardG, NnaE, KhorashadJS, StevensD, SwaleB, MilojkovicD, ReidA, GoldmanJ, MarinD. Technical aspects and clinical applications of measuring BCR-ABL1 transcripts number in chronic myeloid leukemia. Am J Hematol2009; 84(8): 517–522
CrossRef ADS Pubmed Google scholar
[22]
SzczylikC, SkorskiT, NicolaidesNC, ManzellaL, MalaguarneraL, VenturelliD, GewirtzAM, CalabrettaB. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science1991; 253(5019): 562–565
CrossRef ADS Pubmed Google scholar
[23]
Van EttenRA, JacksonP, BaltimoreD. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell1989; 58(4): 669–678
CrossRef ADS Pubmed Google scholar
[24]
KonopkaJB, WatanabeSM, WitteON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell1984; 37(3): 1035–1042
CrossRef ADS Pubmed Google scholar
[25]
BariláD, Superti-FurgaG. An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet1998; 18(3): 280–282
CrossRef ADS Pubmed Google scholar
[26]
FranzWM, BergerP, WangJY. Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J1989; 8(1): 137–147
Pubmed
[27]
JacksonP, BaltimoreD. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J1989; 8(2): 449–456
Pubmed
[28]
MayerBJ, BaltimoreD. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol Cell Biol1994; 14(5): 2883–2894
Pubmed
[29]
PendergastAM, MullerAJ, HavlikMH, ClarkR, McCormickF, WitteON. Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci USA1991; 88(13): 5927–5931
CrossRef ADS Pubmed Google scholar
[30]
DeiningerM, BuchdungerE, DrukerBJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood2005; 105(7): 2640–2653
CrossRef ADS Pubmed Google scholar
[31]
BergerR, ChenSJ, ChenZ. Philadelphia-positive acute leukemia.Cytogenetic and molecular aspects. Cancer Genet Cytogenet1990; 44(2): 143–152
CrossRef ADS Pubmed Google scholar
[32]
DrukerBJ, SawyersCL, KantarjianH, RestaDJ, ReeseSF, FordJM, CapdevilleR, TalpazM. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med2001; 344(14): 1038–1042
CrossRef ADS Pubmed Google scholar
[33]
Dalla-FaveraR, BregniM, EriksonJ, PattersonD, GalloRC, CroceCM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA1982; 79(24): 7824–7827
CrossRef ADS Pubmed Google scholar
[34]
ZechL, HaglundU, NilssonK, KleinG. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer1976; 17(1): 47–56
CrossRef ADS Pubmed Google scholar
[35]
TaubR, KirschI, MortonC, LenoirG, SwanD, TronickS, AaronsonS, LederP. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA1982; 79(24): 7837–7841
CrossRef ADS Pubmed Google scholar
[36]
KüppersR, Dalla-FaveraR. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene2001; 20(40): 5580–5594
CrossRef ADS Pubmed Google scholar
[37]
ar-RushdiA, NishikuraK, EriksonJ, WattR, RoveraG, CroceCM. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science1983; 222(4622): 390–393
CrossRef ADS Pubmed Google scholar
[38]
KanungoA, MedeirosLJ, AbruzzoLV, LinP. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol2006; 19(1): 25–33
CrossRef ADS Pubmed Google scholar
[39]
AdamsJM, HarrisAW, PinkertCA, CorcoranLM, AlexanderWS, CoryS, PalmiterRD, BrinsterRL. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature1985; 318(6046): 533–538
CrossRef ADS Pubmed Google scholar
[40]
JanzS. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst)2006; 5(9–10): 1213–1224
CrossRef ADS Pubmed Google scholar
[41]
WangJH, AltFW, GostissaM, DattaA, MurphyM, AlimzhanovMB, CoakleyKM, RajewskyK, ManisJP, YanCT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med2008; 205(13): 3079–3090
CrossRef ADS Pubmed Google scholar
[42]
BoxerLM, DangCV. Translocations involving c-myc and c-myc function. Oncogene2001; 20(40): 5595–5610
CrossRef ADS Pubmed Google scholar
[43]
TruffinetV, PinaudE, CognéN, PetitB, GuglielmiL, CognéM, DenizotY. The 3′ IgH locus control region is sufficient to deregulate a c-myc transgene and promote mature B cell malignancies with a predominant Burkitt-like phenotype. J Immunol2007; 179(9): 6033–6042
Pubmed
[44]
WangJ, BoxerLM. Regulatory elements in the immunoglobulin heavy chain gene 3′-enhancers induce c-myc deregulation and lymphomagenesis in murine B cells. J Biol Chem2005; 280(13): 12766–12773
CrossRef ADS Pubmed Google scholar
[45]
YanY, ParkSS, JanzS, EckhardtLA. In a model of immunoglobulin heavy-chain (IGH)/MYC translocation, the Igh 3′ regulatory region induces MYC expression at the immature stage of B cell development. Genes Chromosomes Cancer2007; 46(10): 950–959
CrossRef ADS Pubmed Google scholar
[46]
GostissaM, YanCT, BiancoJM, CognéM, PinaudE, AltFW. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3′ regulatory region. Nature2009; 462(7274): 803–807
CrossRef ADS Pubmed Google scholar
[47]
MiyoshiH, ShimizuK, KozuT, MasekiN, KanekoY, OhkiM. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA1991; 88(23): 10431–10434
CrossRef ADS Pubmed Google scholar
[48]
TsujimotoY, FingerLR, YunisJ, NowellPC, CroceCM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science1984; 226(4678): 1097–1099
CrossRef ADS Pubmed Google scholar
[49]
VauxDL, CoryS, AdamsJM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature1988; 335(6189): 440–442
CrossRef ADS Pubmed Google scholar
[50]
GostissaM, AltFW, ChiarleR. Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol2011; 29(1): 319–350
CrossRef ADS Pubmed Google scholar
[51]
ZhangY, GostissaM, HildebrandDG, BeckerMS, BoboilaC, ChiarleR, LewisS, AltFW. The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol2010; 106: 93–133
CrossRef ADS Pubmed Google scholar
[52]
LieberMR, YuK, RaghavanSC. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst)2006; 5(9–10): 1234–1245
CrossRef ADS Pubmed Google scholar
[53]
MarculescuR, VanuraK, MontpellierB, RoullandS, LeT, NavarroJM, JägerU, McBlaneF, NadelB. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures. DNA Repair (Amst)2006; 5(9–10): 1246–1258
CrossRef ADS Pubmed Google scholar
[54]
TsaiAG, LieberMR. Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics2010; 11(Suppl 1): S1
CrossRef ADS Pubmed Google scholar
[55]
SchatzDG, SwansonPC. V(D)J recombination: mechanisms of initiation. Annu Rev Genet2011; 45(1): 167–202
CrossRef ADS Pubmed Google scholar
[56]
GormanJR, AltFW. Regulation of immunoglobulin light chain isotype expression. Adv Immunol1998; 69: 113–181
CrossRef ADS Pubmed Google scholar
[57]
JungD, GiallourakisC, MostoslavskyR, AltFW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol2006; 24(1): 541–570
CrossRef ADS Pubmed Google scholar
[58]
BassingCH, SwatW, AltFW. The mechanism and regulation of chromosomal V(D)J recombination. Cell2002; 109(2 Suppl): S45–S55
CrossRef ADS Pubmed Google scholar
[59]
ChaudhuriJ, BasuU, ZarrinA, YanC, FrancoS, PerlotT, VuongB, WangJ, PhanRT, DattaA, ManisJ, AltFW. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol2007; 94: 157–214
CrossRef ADS Pubmed Google scholar
[60]
GaoY, SunY, FrankKM, DikkesP, FujiwaraY, SeidlKJ, SekiguchiJM, RathbunGA, SwatW, WangJ, BronsonRT, MalynnBA, BryansM, ZhuC, ChaudhuriJ, DavidsonL, FerriniR, StamatoT, OrkinSH, GreenbergME, AltFW. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell1998; 95(7): 891–902
CrossRef ADS Pubmed Google scholar
[61]
YanCT, BoboilaC, SouzaEK, FrancoS, HickernellTR, MurphyM, GumasteS, GeyerM, ZarrinAA, ManisJP, RajewskyK, AltFW. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature2007; 449(7161): 478–482
CrossRef ADS Pubmed Google scholar
[62]
LieberMR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem2010; 79(1): 181–211
CrossRef ADS Pubmed Google scholar
[63]
NambiarM, RaghavanSC. How does DNA break during chromosomal translocations? Nucleic Acids Res2011; 39(14): 5813–5825
CrossRef ADS Pubmed Google scholar
[64]
LewisSM, AgardE, SuhS, CzyzykL. Cryptic signals and the fidelity of V(D)J joining. Mol Cell Biol1997; 17(6): 3125–3136
Pubmed
[65]
MarculescuR, LeT, SimonP, JaegerU, NadelBV. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J Exp Med2002; 195(1): 85–98
CrossRef ADS Pubmed Google scholar
[66]
RaghavanSC, KirschIR, LieberMR. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem2001; 276(31): 29126–29133
CrossRef ADS Pubmed Google scholar
[67]
NambiarM, GoldsmithG, MoorthyBT, LieberMR, JoshiMV, ChoudharyB, HosurRV, RaghavanSC. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res2011; 39(3): 936–948
CrossRef ADS Pubmed Google scholar
[68]
RaghavanSC, SwansonPC, WuX, HsiehCL, LieberMR. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature2004; 428(6978): 88–93
CrossRef ADS Pubmed Google scholar
[69]
KüppersR. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer2005; 5(4): 251–262
CrossRef ADS Pubmed Google scholar
[70]
TsaiAG, LuH, RaghavanSC, MuschenM, HsiehCL, LieberMR. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell2008; 135(6): 1130–1142
CrossRef ADS Pubmed Google scholar
[71]
GazumyanA, BothmerA, KleinIA, NussenzweigMC, McBrideKM. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res2012; 113: 167–190
CrossRef ADS Pubmed Google scholar
[72]
KovalchukAL, duBoisW, MushinskiE, McNeilNE, HirtC, QiCF, LiZ, JanzS, HonjoT, MuramatsuM, RiedT, BehrensT, PotterM. AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. J Exp Med2007; 204(12): 2989–3001
CrossRef ADS Pubmed Google scholar
[73]
RamiroAR, JankovicM, EisenreichT, DifilippantonioS, Chen-KiangS, MuramatsuM, HonjoT, NussenzweigA, NussenzweigMC. AID is required for c-myc/IgH chromosome translocations in vivo. Cell2004; 118(4): 431–438
CrossRef ADS Pubmed Google scholar
[74]
RobbianiDF, BothmerA, CallenE, Reina-San-MartinB, DorsettY, DifilippantonioS, BollandDJ, ChenHT, CorcoranAE, NussenzweigA, NussenzweigMC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell2008; 135(6): 1028–1038
CrossRef ADS Pubmed Google scholar
[75]
JägerU, BöcskörS, LeT, MitterbauerG, BolzI, ChottA, KnebaM, MannhalterC, NadelB. Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood2000; 95(11): 3520–3529
Pubmed
[76]
WangJH, GostissaM, YanCT, GoffP, HickernellT, HansenE, DifilippantonioS, WesemannDR, ZarrinAA, RajewskyK, NussenzweigA, AltFW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature2009; 460(7252): 231–236
CrossRef ADS Pubmed Google scholar
[77]
BassingCH, AltFW. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst)2004; 3(8–9): 781–796
CrossRef ADS Pubmed Google scholar
[78]
SavageJR. Reflections and meditations upon complex chromosomal exchanges. Mutat Res2002; 512(2–3): 93–109
CrossRef ADS Pubmed Google scholar
[79]
RichardsonC, JasinM. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature2000; 405(6787): 697–700
CrossRef ADS Pubmed Google scholar
[80]
BellaicheY, MogilaV, PerrimonN. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila. Genetics1999; 152(3): 1037–1044
Pubmed
[81]
JasinM. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet1996; 12(6): 224–228
CrossRef ADS Pubmed Google scholar
[82]
ZarrinAA, Del VecchioC, TsengE, GleasonM, ZarinP, TianM, AltFW. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science2007; 315(5810): 377–381
CrossRef ADS Pubmed Google scholar
[83]
ChiarleR, ZhangY, FrockRL, LewisSM, MolinieB, HoYJ, MyersDR, ChoiVW, CompagnoM, MalkinDJ, NeubergD, MontiS, GiallourakisCC, GostissaM, AltFW. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell2011; 147(1): 107–119
CrossRef ADS Pubmed Google scholar
[84]
KleinIA, ReschW, JankovicM, OliveiraT, YamaneA, NakahashiH, Di VirgilioM, BothmerA, NussenzweigA, RobbianiDF, CasellasR, NussenzweigMC. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell2011; 147(1): 95–106
CrossRef ADS Pubmed Google scholar
[85]
LinC, YangL, TanasaB, HuttK, JuBG, OhgiK, ZhangJ, RoseDW, FuXD, GlassCK, RosenfeldMG. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell2009; 139(6): 1069–1083
CrossRef ADS Pubmed Google scholar
[86]
MahowaldGK, BaronJM, MahowaldMA, KulkarniS, BredemeyerAL, BassingCH, SleckmanBP. Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc Natl Acad Sci USA2009; 106(43): 18339–18344
CrossRef ADS Pubmed Google scholar
[87]
WeinstockDM, BrunetE, JasinM. Induction of chromosomal translocations in mouse and human cells using site-specific endonucleases. J Natl Cancer Inst Monogr2008; 39: 20–24
CrossRef ADS Pubmed Google scholar
[88]
StoddardBL. Homing endonuclease structure and function. Q Rev Biophys2005; 38(1): 49–95
CrossRef ADS Pubmed Google scholar
[89]
SavageJR. Proximity matters. Science2000; 290(5489): 62–63
CrossRef ADS Pubmed Google scholar
[90]
SavageJR. A brief survey of aberration origin theories. Mutat Res1998; 404(1–2): 139–147
CrossRef ADS Pubmed Google scholar
[91]
CremerT, CremerC. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet2001; 2(4): 292–301
CrossRef ADS Pubmed Google scholar
[92]
CremerT, CremerM. Chromosome territories. Cold Spring Harb Perspect Biol2010; 2(3): a003889
CrossRef ADS Pubmed Google scholar
[93]
GilbertN, BoyleS, FieglerH, WoodfineK, CarterNP, BickmoreWA. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell2004; 118(5): 555–566
CrossRef ADS Pubmed Google scholar
[94]
Lieberman-AidenE, van BerkumNL, WilliamsL, ImakaevM, RagoczyT, TellingA, AmitI, LajoieBR, SaboPJ, DorschnerMO, SandstromR, BernsteinB, BenderMA, GroudineM, GnirkeA, StamatoyannopoulosJ, MirnyLA, LanderES, DekkerJ. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science2009; 326(5950): 289–293
CrossRef ADS Pubmed Google scholar
[95]
AtenJA, StapJ, KrawczykPM, van OvenCH, HoebeRA, EssersJ, KanaarR. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science2004; 303(5654): 92–95
CrossRef ADS Pubmed Google scholar
[96]
DionV, KalckV, HorigomeC, TowbinBD, GasserSM. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol2012; 14(5): 502–509
CrossRef ADS Pubmed Google scholar
[97]
Miné-HattabJ, RothsteinR. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol2012; 14(5): 510–517
CrossRef ADS Pubmed Google scholar
[98]
MarshallWF, StraightA, MarkoJF, SwedlowJ, DernburgA, BelmontA, MurrayAW, AgardDA, SedatJW. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol1997; 7(12): 930–939
CrossRef ADS Pubmed Google scholar
[99]
SoutoglouE, DornJF, SenguptaK, JasinM, NussenzweigA, RiedT, DanuserG, MisteliT. Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol2007; 9(6): 675–682
CrossRef ADS Pubmed Google scholar
[100]
MeaburnKJ, MisteliT, SoutoglouE. Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol2007; 17(1): 80–90
CrossRef ADS Pubmed Google scholar
[101]
NevesH, RamosC, da SilvaMG, ParreiraA, ParreiraL. The nuclear topography of ABL, BCR, PML, and RARalpha genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood1999; 93(4): 1197–1207
Pubmed
[102]
OsborneCS, ChakalovaL, MitchellJA, HortonA, WoodAL, BollandDJ, CorcoranAE, FraserP. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol2007; 5(8): e192
CrossRef ADS Pubmed Google scholar
[103]
RoixJJ, McQueenPG, MunsonPJ, ParadaLA, MisteliT. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet2003; 34(3): 287–291
CrossRef ADS Pubmed Google scholar
[104]
ManiRS, TomlinsSA, CallahanK, GhoshA, NyatiMK, VaramballyS, PalanisamyN, ChinnaiyanAM. Induced chromosomal proximity and gene fusions in prostate cancer. Science2009; 326(5957): 1230
CrossRef ADS Pubmed Google scholar
[105]
MathasS, KreherS, MeaburnKJ, JöhrensK, LamprechtB, AssafC, SterryW, KadinME, DaibataM, JoosS, HummelM, SteinH, JanzM, AnagnostopoulosI, SchrockE, MisteliT, DörkenB. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA2009; 106(14): 5831–5836
CrossRef ADS Pubmed Google scholar
[106]
ZhangY, McCordRP, HoYJ, LajoieBR, HildebrandDG, SimonAC, BeckerMS, AltFW, DekkerJ. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell2012; 148(5): 908–921
CrossRef ADS Pubmed Google scholar
[107]
HakimO, ReschW, YamaneA, KleinI, Kieffer-KwonKR, JankovicM, OliveiraT, BothmerA, VossTC, Ansarah-SobrinhoC, MatheE, LiangG, CobellJ, NakahashiH, RobbianiDF, NussenzweigA, HagerGL, NussenzweigMC, CasellasR. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature2012; 484(7392): 69–74
Pubmed
[108]
LiuP, ErezA, NagamaniSC, DharSU, KołodziejskaKE, DharmadhikariAV, CooperML, WiszniewskaJ, ZhangF, WithersMA, BacinoCA, Campos-AcevedoLD, DelgadoMR, FreedenbergD, GarnicaA, GrebeTA, Hernández-AlmaguerD, ImmkenL, LalaniSR, McLeanSD, NorthrupH, ScagliaF, StrathearnL, TrapaneP, KangSH, PatelA, CheungSW, HastingsPJ, StankiewiczP, LupskiJR, BiW. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell2011; 146(6): 889–903
CrossRef ADS Pubmed Google scholar
[109]
RauschT, JonesDT, ZapatkaM, StützAM, ZichnerT, WeischenfeldtJ, JägerN, RemkeM, ShihD, NorthcottPA, PfaffE, TicaJ, WangQ, MassimiL, WittH, BenderS, PleierS, CinH, HawkinsC, BeckC, von DeimlingA, HansV, BrorsB, EilsR, ScheurlenW, BlakeJ, BenesV, KulozikAE, WittO, MartinD, ZhangC, PoratR, MerinoDM, WassermanJ, JabadoN, FontebassoA, BullingerL, RückerFG, DöhnerK, DöhnerH, KosterJ, MolenaarJJ, VersteegR, KoolM, TaboriU, MalkinD, KorshunovA, TaylorMD, LichterP, PfisterSM, KorbelJO. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell2012; 148(1–2): 59–71
CrossRef ADS Pubmed Google scholar
[110]
StephensPJ, GreenmanCD, FuB, YangF, BignellGR, MudieLJ, PleasanceED, LauKW, BeareD, StebbingsLA, McLarenS, LinML, McBrideDJ, VarelaI, Nik-ZainalS, LeroyC, JiaM, MenziesA, ButlerAP, TeagueJW, QuailMA, BurtonJ, SwerdlowH, CarterNP, MorsbergerLA, Iacobuzio-DonahueC, FollowsGA, GreenAR, FlanaganAM, StrattonMR, FutrealPA, CampbellPJ. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell2011; 144(1): 27–40
CrossRef ADS Pubmed Google scholar
[111]
KearneyL, HorsleySW. Molecular cytogenetics in haematological malignancy: current technology and future prospects. Chromosoma2005; 114(4): 286–294
CrossRef ADS Pubmed Google scholar
[112]
SpeicherMR, CarterNP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet2005; 6(10): 782–792
CrossRef ADS Pubmed Google scholar
[113]
ShuenA, FoulkesWD. Clinical implications of next-generation sequencing for cancer medicine. Curr Oncol2010; 17(5): 39–42
Pubmed
[114]
ChenZ, ChenSJ, TongJH, ZhuYJ, HuangME, WangWC, WuY, SunGL, WangZY, LarsenCJ, BergerR . The retinoic acid alpha receptor gene is frequently disrupted in its 5′ part in Chinese patients with acute promyelocytic leukemia. Leukemia1991; 5(4): 288–292
Pubmed
[115]
ChenZX, XueYQ, ZhangR, TaoRF, XiaXM, LiC, WangW, ZuWY, YaoXZ, LingBJ. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood1991; 78(6): 1413–1419
Pubmed
[116]
HuangME, YeYC, ChenSR, ChaiJR, LuJX, ZhoaL, GuLJ, WangZY. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood1988; 72(2): 567–572
Pubmed
[117]
MorrisSW, KirsteinMN, ValentineMB, DittmerKG, ShapiroDN, SaltmanDL, LookAT. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science1994; 263(5151): 1281–1284
CrossRef ADS Pubmed Google scholar
[118]
ShiotaM, FujimotoJ, SembaT, SatohH, YamamotoT, MoriS. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene1994; 9(6): 1567–1574
Pubmed
[119]
ChenY, TakitaJ, ChoiYL, KatoM, OhiraM, SanadaM, WangL, SodaM, KikuchiA, IgarashiT, NakagawaraA, HayashiY, ManoH, OgawaS. Oncogenic mutations of ALK kinase in neuroblastoma. Nature2008; 455(7215): 971–974
CrossRef ADS Pubmed Google scholar
[120]
KwakEL, BangYJ, CamidgeDR, ShawAT, SolomonB, MakiRG, OuSH, DezubeBJ, JännePA, CostaDB, Varella-GarciaM, KimWH, LynchTJ, FidiasP, StubbsH, EngelmanJA, SequistLV, TanW, GandhiL, Mino-KenudsonM, WeiGC, ShreeveSM, RatainMJ, SettlemanJ, ChristensenJG, HaberDA, WilnerK, SalgiaR, ShapiroGI, ClarkJW, IafrateAJ. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med2010; 363(18): 1693–1703
CrossRef ADS Pubmed Google scholar
[121]
SolomonB, Varella-GarciaM, CamidgeDR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol2009; 4(12): 1450–1454
CrossRef ADS Pubmed Google scholar
[122]
TakeuchiK, ChoiYL, TogashiY, SodaM, HatanoS, InamuraK, TakadaS, UenoT, YamashitaY, SatohY, OkumuraS, NakagawaK, IshikawaY, ManoH. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res2009; 15(9): 3143–3149
CrossRef ADS Pubmed Google scholar
[123]
RabkinCS, JanzS. Mechanisms and consequences of chromosomal translocation. Cancer Epidemiol Biomarkers Prev2008; 17(8): 1849–1851
CrossRef ADS Pubmed Google scholar
[124]
WiemelsJ. Chromosomal translocations in childhood leukemia: natural history, mechanisms, and epidemiology. J Natl Cancer Inst Monogr2008; 39: 87–90
CrossRef ADS Pubmed Google scholar
[125]
MagrathI. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol2012; 156(6): 744–756
CrossRef ADS Pubmed Google scholar
[126]
GreavesMF, WiemelsJ. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer2003; 3(9): 639–649
CrossRef ADS Pubmed Google scholar

Acknowledgements

I thank Drs. Yu Zhang, Monica Gostissa, Zhangguo Chen, and Shan Zha for comments. I apologize to those whose work was not cited due to length restrictions. This work was supported by University of Colorado School of Medicine start-up fund, Leukemia Research Foundation, and Boettcher Foundation for J.H.W. J.H.W. is a recipient of Boettcher Foundation Webb-Waring Biomedical Research Award. The author declares no conflict of interest.

版权

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(276 KB)

Accesses

Citation

Detail

段落导航
相关文章

/