Asymptotic analysis of a coupled nonlinear parabolic system

Expand
  • Department of Applied Mathematics, Dalian University of Technology;

Published date: 05 Mar 2008

Abstract

This paper deals with asymptotic analysis of a parabolic system with inner absorptions and coupled nonlinear boundary fluxes. Three simultaneous blow-up rates are established under different dominations of nonlinearities, and simply represented in a characteristic algebraic system introduced for the problem. In particular, it is observed that two of the multiple blow-up rates are absorption-related. This is substantially different from those for nonlinear parabolic problems with absorptions in all the previous literature, where the blow-up rates were known as absorption-independent. The results of the paper rely on the scaling method with a complete classification for the nonlinear parameters of the model. The first example of absorption-related blow-up rates was recently proposed by the authors for a coupled parabolic system with mixed type nonlinearities. The present paper shows that the newly observed phenomena of absorption-related blow-up rates should be due to the coupling mechanism, rather than the mixed type nonlinearities.

Cite this article

QIAO Lan, ZHENG Sining . Asymptotic analysis of a coupled nonlinear parabolic system[J]. Frontiers of Mathematics in China, 2008 , 3(1) : 87 -99 . DOI: 10.1007/s11464-008-0002-4

References

1. Amann H Parabolicevolution equations and nonlinear boundary conditionsJ Differential Equations 1988 72201269. doi:10.1016/0022‐0396(88)90156‐8
2. Brandle C Quirós F Rossi J D A complete classification of simultaneous blow-up ratesAppl Math Lett 2006 19607611. doi:10.1016/j.aml.2005.08.007
3. Bebernes J Eberly D Mathematical Problem from CombustionTheoryAppl Math Sci 83BerlinSpringer-Verlag 1989
4. Chen Y P Blow-upfor a system of heat equations with nonlocal sources and absorptionsComput Math Appl 2004 48361372. doi:10.1016/j.camwa.2004.05.002
5. Deng K Globalexistence and blow-up for a system of heat equations with a nonlinearboundary conditionMath Meth Appl Sci 1995 18307315. doi:10.1002/mma.1670180405
6. Deng K Blow-uprates for parabolic systemsZ Angew MathPhys 1995 46110118. doi:10.1007/BF00917874
7. Hu B Yin H M The profile near blow-up timefor the solution of the heat equation with a nonlinear boundary conditionTrans Amer Math Soc 1994 346117135. doi:10.2307/2154944
8. Jiang Z X Zheng S N Blow-up rate for a nonlineardiffusion equation with absorption and nonlinear boundary fluxAdv Math (China) 2004 33615620
9. Li H L Wang M X Critical exponents and lowerbounds of blow-up rate for a reaction-diffusion systemNonlinear Anal 2005 6310831093. doi:10.1016/j.na.2005.05.037
10. Lin Z G Blowupbehaviors for diffusion system coupled through nonlinear boundaryconditions in a half spaceSci China, SerA 2004 477282. doi:10.1360/03ys0068
11. Liu Q L Li Y X Xie C H The blowup property of solutions to degenerate parabolicequation with localized nonlinear reactionsActa Math Sinica (Chin Ser) 2003 4611351142
12. Quirós F Rossi J D Blow-up sets and Fujita typecurves for a degenerate parabolic system with nonlinear boundary conditionsIndiana Univ Math J 2001 50629654
13. Rossi J D Theblow up rate for a semilinear parabolic equation with a nonlinearboundary conditionActa Mathematica UnivComenian (NS) 1998 67343350
14. Souplet P Uniformblow-up profile and boundary behaviour for a non-local reaction-diffusionequation with critical dampingMath MethodsAppl Sci 2004 2718191829. doi:10.1002/mma.567
15. Souplet P Uniformblow-up profiles and boundary behavior for diffusion equations withnonlocal nonlinear sourceJ DifferentialEquations 1999 153374406. doi:10.1006/jdeq.1998.3535
16. Zheng S N Nonexistenceof positive solutions to a semilinear elliptic system and blow-upestimates for a reaction-diffusion systemJ Math Anal Appl 1999 232293311. doi:10.1006/jmaa.1999.6273
17. Zheng S N Li F J Critical exponents for a reaction-diffusionsystem with absorptions and coupled boundary fluxProc Edinburgh Math Soc 2005 48110. doi:10.1017/S0013091504000811
18. Zheng S N Song X F Interactions among multi-nonliearitiesin a nonlinear diffusion system with absorptions and nonlinear boundaryfluxNonlinear Anal 2004 57519530. doi:10.1016/j.na.2004.02.026
19. Zheng S N Li F J Liu B C Asymptotic behavior for a reaction-diffusion equation withinner absorption and boundary fluxApplMath Lett 2006 19942948. doi:10.1016/j.aml.2005.11.009
20. Zheng S N Su H A quasilinear reaction-diffusionsystem coupled via nonlocal sourcesApplMath Comput 2006 180295308. doi:10.1016/j.amc.2005.12.020
21. Zheng S N Wang W Critical exponents for a nonlinearparabolic systemNonlinear Anal 2007 6711901210. doi:10.1016/j.na.2006.07.007
22. Zheng S N Wang W Blow-up rate for a nonlineardiffusion equationAppl Math Lett 2006 1913851389. doi:10.1016/j.aml.2006.02.008
Outlines

/