In this paper, a class of generalized Verma modules M(V) over some Block type Lie algebra B(G) are constructed, which are induced from nontrivial simple modules V over a subalgebra of B(G). The irreducibility of M(V) is determined.
CHENG Yongsheng, SU Yucai
. Generalized Verma modules over some Block algebras[J]. Frontiers of Mathematics in China, 2008
, 3(1)
: 37
-47
.
DOI: 10.1007/s11464-008-0008-y
1. Block R Ontorsion-free abelian groups and Lie algebrasProc Amer Math Soc 1958 9613620. doi:10.2307/2033218
2. Hu J Wang X D Zhao K M Verma modules over generalized Virasoro algebras Vir[G]J Pure ApplAlgebra 2003 1776169. doi:10.1016/S0022‐4049(02)00173‐1
3. Kac V Radul A Quasi-finite highest weightmodules over the Lie algebra of differential operators on the circleComm Math phys 1993 157429457. doi:10.1007/BF02096878
4. Kac V Raina A Highest Weight Representationsof Infinite Dimensional Lie AlgebrasHong KongWorld Scientific 1987 19
5. Khomenko A Mazorchuk V Generalized Verma modules overthe Lie algebra of type G2Comm Algebra 1999 27777783. doi:10.1080/00927879908826460
6. Khomenko A Mazorchuk V Generalized Verma modules inducedfrom sl(2,࠶) and associated Verma modulesJ Algebra 2001 242(2)561576. doi:10.1006/jabr.2001.8815
7. Mazorchuk V Vermamodules over generalized Witt algebraComposMath 1999 115(1)2135. doi:10.1023/A:1000531924778
8. Mazorchuk V TheStructure of Generalized Verma Modules. Dissertation for the DoctoralDegreeKyiv University 1996 512
9. Su Y Classificationof quasifinite modules over the Lie algebras of Weyl typeAdv Math 2003 1745768. doi:10.1016/S0001‐8708(02)00051‐8
10. Su Y Quasifiniterepresentations of a Lie algebra of Block typeJ Algebra 2004 276117128. doi:10.1016/j.jalgebra.2003.11.023
11. Su Y Quasifiniterepresentations of a family of Lie algebras of Block typeJ Pure Appl Algebra 2004 192293305. doi:10.1016/j.jpaa.2004.02.004
12. Verma D Structureof certain induced representations of complex semisimple Lie algebrasBull Amer Math Soc 1968 74160166. doi:10.1090/S0002‐9904‐1968‐11921‐4
13. Wang X Zhao K Verma modules over the Virasoro-likealgebraJ Australia Math 2006 80179191
14. Wu Y Su Y Highest weight representationsof a Lie algebra of Block typeScience inChina, Ser A 2007 50(4)549560. doi:10.1007/s11425‐007‐0028‐1
15. Xu X Generalizationsof Block algebrasManuscripta Math 1999 100489518. doi:10.1007/s002290050214
16. Xu X Quadraticconformal superalgebrasJ Algebra 2000 231138. doi:10.1006/jabr.1999.8346
17. Xu X Newgeneralized simple Lie algebras of Cartan type over a field with characteristic0J Algebra 2000 2242358. doi:10.1006/jabr.1998.8083
18. Yue X Su Y Xin B Highest weight representations of a family of Lie algebrasof Block typeActa Mathematica Sinica (EnglishSer)(in press)
19. Zhang C Su Y Generalized Verma module overnongraded Witt algebraJ Univ Sci Tech China(in press)