Fractional Levy processes on Gel'fand triple and stochastic integration

Expand
  • Department of Mathematics, Huazhong University of Science and Technology;

Published date: 05 Jun 2008

Abstract

In this paper, we investigate the long-range dependence of fractional Levy processes on Gel’fand triple and construct stochastic integral with respect to fractional Levy processes for a class of deterministic integrands.

Cite this article

LV Xuebin, HUANG Zhiyuan, WAN Jianping . Fractional Levy processes on Gel'fand triple and stochastic integration[J]. Frontiers of Mathematics in China, 2008 , 3(2) : 287 -303 . DOI: 10.1007/s11464-008-0022-0

References

1. Bender C Elliott R J On the Clark-Ocone theoremfor fractional Brownian motions with Hurst parameter bigger than onehalfStochastics and Stochastic Reports 2003 75391405
2. Duncan T E Jakubowski J Pasik-Duncan B Stochastic equations in Hilbert space with a multiplicativefractional Gaussian noiseStoch Proc Appl 2005 11513571387. doi:10.1016/j.spa.2005.03.011
3. Duncan T E Jakubowski J Pasik-Duncan B Stochastic integration for fractional Brownian motion ina Hilbert spaceStoch Dyn 2006 65375. doi:10.1142/S0219493706001645
4. Gel'fand I M Vilenkin N Ya Generalized Functions. Vol4New YorkAcademic Press 1964
5. Huang Z Li C On fractional stable processesand sheets: white noise approachJ MathAnal Appl 2007 325624635. doi:10.1016/j.jmaa.2006.02.020
6. Huang Z Li C Wan J et al.Fractional Brownian motion and sheet as white noisefunctionalsActa Math Sinica 2006 2211831188. doi:10.1007/s10114‐005‐0734‐y
7. Huang Z Li P Generalized fractional Lévyprocesses: a white noise approachStochDyn 2006 6473485. doi:10.1142/S0219493706001839
8. Huang Z Lü X Wan J Fractional Lévy processes and noises on Gel'fandtriple (to appear)
9. Itô K Foundationsof Stochastic Differential Equations in Infinite Dimensional SpacesCBMS-NSF Regional Conference Series in Applied Mathematics,Vol 47PhiladelphiaSIAM 1984
10. Kallianpur G Xiong J Stochastic Differential Equationsin Infinite Dimensional SpaceLecture NotesMonograph Series, Vol 26HaywardInst Math Statist 1995
11. Laskin N Lambadaris I Harmantzis F C et al.Fractional Lévy motion and its applicationto network traffic modelingComput Networks 2002 40363375. doi:10.1016/S1389‐1286(02)00300‐6
12. Mandelbrot B Van Vess J Fractional Brownian motion,fractional noises and applicationSIAM Rev 1968 10427437. doi:10.1137/1010093
13. Marquardt T FractionalLévy processes with an application to long memory moving averageprocessesBernoulli 2006 12(6)10091126. doi:10.3150/bj/1165269152
14. Maslowski B Nualart D Evolution equations drivenby a fractional Brownian motionJ FunctAnal 2003 202277305. doi:10.1016/S0022‐1236(02)00065‐4
15. Peszat S Zabczyk J Stochastic Partial DifferentialEquations with Lévy Noise: An Evolution Equation ApproachEncyclopedia of Mathematics and its Applications,Vol 113CambridgeCambridge University Press 2007
16. Samko S G Kilbas A A Marichev O I Fractional Integrals and Derivatives: Theory and ApplicationsLondonGordonand Breach 1987
17. Samorodnitsky G Taqqu M S Stable Non-Gaussian ProcessesNew YorkChapmanand Hall 1994
18. Sato K LévyProcesses and Infinitely Divisible DistributionsCambridgeCambridge UniversityPress 1999
19. Tindel S Tudor C A Viens F Stochastic evolution equations with fractional BrownianmotionProbab Th Rel Fields 2003 127186204. doi:10.1007/s00440‐003‐0282‐2
20. Wang C S Qu M S Chen J S A white noise approach to infinitely divisible distributionson Gel'fand tripleJ Math Anal Appl 2006 315425435. doi:10.1016/j.jmaa.2005.09.030
Outlines

/