We show the existence of at least two geometrically distinct closed geodesics on a complex projective plane with a bumpy and non-reversible Finsler metric.
RADEMACHER Hans-Bert
. The second closed geodesic on a complex projective
plane[J]. Frontiers of Mathematics in China, 2008
, 3(2)
: 253
-258
.
DOI: 10.1007/s11464-008-0016-y
1. Bangert V Long Y The existence of two closedgeodesics on every Finsler 2-sphere arXiv:0709.1243
2. Duan H Long Y Multiple closed geodesics onbumpy Finsler n-spheresJ Diff Eq 2007 233221240. doi:10.1016/j.jde.2006.10.002
3. Long Y Multiplicityand stability of closed geodesics on Finsler 2-spheresJ Eur Math Soc 2006 8341353
4. Rademacher H B Onthe average indices of closed geodesicsJ Differential Geom 1989 296583
5. Rademacher H B Existenceof closed geodesics on positively curved Finsler manifoldsErgod Th & Dyn Syst 2007 27957969. doi:10.1017/S0143385706001064
6. Rademacher H B Thesecond closed geodesic on Finsler spheres of dimension n > 2TransAmer Math Soc (to appear)
7. Ziller W Geometryof the Katok examplesErgod Th & DynSyst 1982 3135157