RESEARCH ARTICLE

Construction of periodic wavelet frames with dilation matrix

  • Dayong LU 1 ,
  • Dengfeng LI , 1,2
Expand
  • 1. Institute of Applied Mathematics, School of Mathematics and Information Sciences, Henan University, Kaifeng 475001, China
  • 2. School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430200, China

Received date: 20 Jul 2012

Accepted date: 24 Sep 2013

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

An important tool for the construction of periodic wavelet frame with the help of extension principles was presented in the Fourier domain by Zhang and Saito [Appl. Comput. Harmon. Anal., 2008, 125: 68-186]. We extend their results to the dilation matrix cases in two aspects. We first show that the periodization of any wavelet frame constructed by the unitary extension principle formulated by Ron and Shen is still a periodic wavelet frame under weaker conditions than that given by Zhang and Saito, and then prove that the periodization of those generated by the mixed extension principle is also a periodic wavelet frame if the scaling functions have compact supports.

Cite this article

Dayong LU , Dengfeng LI . Construction of periodic wavelet frames with dilation matrix[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 111 -134 . DOI: 10.1007/s11464-013-0335-5

1
Benedetto J J, Treiber O M. Wavelet frames: multiresolution analysis and extension principles. In: Debnath L, ed. Wavelet Transforms and Time-Frequency Signal Analysis. Boston: Birkhäuser, 2001, 3-36

DOI

2
Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2003

DOI

3
Chui C K. An Introduction to Wavelets. Boston: Academic Press, 1992

4
Daubechies I, Han B. Pairs of dual wavelet frames from any two refinable functions. Constr Approx, 2004, 20: 325-352

DOI

5
Daubechies I, Han B, Ron A, Shen Z. Framelets: MRA-based constructions of wavelet frames. Appl Comput Harmon Anal, 2003, 1: 1-46

DOI

6
Ehler M. The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces. Jaen J Approx, 2010, 2(2): 193-214

7
Goh S S, Lee S L, Teo K M. Multidimensional periodic multiwavelets. J Approx Theory, 1999, 98: 72-103

DOI

8
Goh S S, Teo K M. Extension principles for tight wavelet frames of periodic functions. Appl Comput Harmon Anal, 2009, 27: 12-23

DOI

9
Goodman T N T. Construction of wavelets with multiplicity. Rend Mat, 1994, 15(7): 665-691

10
Han B. On dual wavelet tight frames. Appl Comput Harmon Anal, 1997, 4: 380-413

DOI

11
Han B. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J Comput Appl Math, 2003, 155: 43-67

DOI

12
Han B. Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl Comput Harmon Anal, 2009, 26: 14-42

DOI

13
Han B, Mo Q. Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl Comput Harmon Anal, 2005, 18: 67-93

DOI

14
Han B, Shen Z. Dual wavelet frames and Riesz bases in Sobolev spaces. Constr Approx, 2009, 29(3): 369-406

DOI

15
Li Y, Yang S. Dual multiwavelet frames with symmetry from two-direction refinable functions. Bull Iranian Math Soc, 2011, 37(1): 199-214

16
Lu D Y, Fan Q B. Characterizations of Lp (ℝ) using tight wavelet frames. Wuhan Univ J Nat Sci, 2010, 15(6): 461-466

17
Lu D Y, Fan Q B. A class of tight framelet packets. Czechoslovak Math J, 2011, 61(3): 623-639

DOI

18
Lu D Y, Li D F. A characterization of orthonormal wavelet families in Sobolev spaces. Acta Math Sci Ser B Engl Ed, 2011, 31(4): 1475-1488

19
Ron A, Shen Z. Affine systems in L2(ℝd) : the analysis of the analysis operator. J Functional Anal, 1997, 148: 408-447

20
Ron A, Shen Z. Affine systems in L2(ℝd) , II: dual systems. J Fourier Anal Appl, 1997, 3(5): 617-637

21
Ron A, Shen Z. Compactly supported tight affine spline frames in L2(ℝd).Math Comp, 1998, 67: 191-207

22
Zhang Z, Saito N. Constructions of periodic wavelet frames using extension principles. Appl Comput Harmon Anal, 2008, 125: 68-186

Options
Outlines

/