Frontiers of Mathematics in China >
Construction of periodic wavelet frames with dilation matrix
Received date: 20 Jul 2012
Accepted date: 24 Sep 2013
Published date: 01 Feb 2014
Copyright
An important tool for the construction of periodic wavelet frame with the help of extension principles was presented in the Fourier domain by Zhang and Saito [Appl. Comput. Harmon. Anal., 2008, 125: 68-186]. We extend their results to the dilation matrix cases in two aspects. We first show that the periodization of any wavelet frame constructed by the unitary extension principle formulated by Ron and Shen is still a periodic wavelet frame under weaker conditions than that given by Zhang and Saito, and then prove that the periodization of those generated by the mixed extension principle is also a periodic wavelet frame if the scaling functions have compact supports.
Dayong LU , Dengfeng LI . Construction of periodic wavelet frames with dilation matrix[J]. Frontiers of Mathematics in China, 2014 , 9(1) : 111 -134 . DOI: 10.1007/s11464-013-0335-5
1 |
Benedetto J J, Treiber O M. Wavelet frames: multiresolution analysis and extension principles. In: Debnath L, ed. Wavelet Transforms and Time-Frequency Signal Analysis. Boston: Birkhäuser, 2001, 3-36
|
2 |
Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2003
|
3 |
Chui C K. An Introduction to Wavelets. Boston: Academic Press, 1992
|
4 |
Daubechies I, Han B. Pairs of dual wavelet frames from any two refinable functions. Constr Approx, 2004, 20: 325-352
|
5 |
Daubechies I, Han B, Ron A, Shen Z. Framelets: MRA-based constructions of wavelet frames. Appl Comput Harmon Anal, 2003, 1: 1-46
|
6 |
Ehler M. The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces. Jaen J Approx, 2010, 2(2): 193-214
|
7 |
Goh S S, Lee S L, Teo K M. Multidimensional periodic multiwavelets. J Approx Theory, 1999, 98: 72-103
|
8 |
Goh S S, Teo K M. Extension principles for tight wavelet frames of periodic functions. Appl Comput Harmon Anal, 2009, 27: 12-23
|
9 |
Goodman T N T. Construction of wavelets with multiplicity. Rend Mat, 1994, 15(7): 665-691
|
10 |
Han B. On dual wavelet tight frames. Appl Comput Harmon Anal, 1997, 4: 380-413
|
11 |
Han B. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J Comput Appl Math, 2003, 155: 43-67
|
12 |
Han B. Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl Comput Harmon Anal, 2009, 26: 14-42
|
13 |
Han B, Mo Q. Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl Comput Harmon Anal, 2005, 18: 67-93
|
14 |
Han B, Shen Z. Dual wavelet frames and Riesz bases in Sobolev spaces. Constr Approx, 2009, 29(3): 369-406
|
15 |
Li Y, Yang S. Dual multiwavelet frames with symmetry from two-direction refinable functions. Bull Iranian Math Soc, 2011, 37(1): 199-214
|
16 |
Lu D Y, Fan Q B. Characterizations of Lp (
|
17 |
Lu D Y, Fan Q B. A class of tight framelet packets. Czechoslovak Math J, 2011, 61(3): 623-639
|
18 |
Lu D Y, Li D F. A characterization of orthonormal wavelet families in Sobolev spaces. Acta Math Sci Ser B Engl Ed, 2011, 31(4): 1475-1488
|
19 |
Ron A, Shen Z. Affine systems in L2(
|
20 |
Ron A, Shen Z. Affine systems in L2(
|
21 |
Ron A, Shen Z. Compactly supported tight affine spline frames in L2(
|
22 |
Zhang Z, Saito N. Constructions of periodic wavelet frames using extension principles. Appl Comput Harmon Anal, 2008, 125: 68-186
|
/
〈 | 〉 |