RESEARCH ARTICLE

Global analysis of smooth solutions to a hyperbolic-parabolic coupled system

  • Yinghui ZHANG , 1,2 ,
  • Haiying DENG 3 ,
  • Mingbao SUN 1
Expand
  • 1. Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China
  • 2. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
  • 3. Department of Mathematics, Hunan First Normal College, Changsha 410205, China

Received date: 24 Feb 2012

Accepted date: 21 Aug 2013

Published date: 01 Dec 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We investigate a model arising from biology, which is a hyperbolicparabolic coupled system. First, we prove the global existence and asymptotic behavior of smooth solutions to the Cauchy problem without any smallness assumption on the initial data. Second, if the HsL1-norm of initial data is sufficiently small, we also establish decay rates of the global smooth solutions. In particular, the optimal L2 decay rate of the solution and the almost optimal L2 decay rate of the first-order derivatives of the solution are obtained. These results are obtained by constructing a new nonnegative convex entropy and combining spectral analysis with energy methods.

Cite this article

Yinghui ZHANG , Haiying DENG , Mingbao SUN . Global analysis of smooth solutions to a hyperbolic-parabolic coupled system[J]. Frontiers of Mathematics in China, 2013 , 8(6) : 1437 -1460 . DOI: 10.1007/s11464-013-0331-9

1
Corrias L, Perthame B, Zaag H. A chemotaxis model motivated by angiogenesis. C R Acad Sci Paris Ser I, 2003, 336: 141-146

DOI

2
Corrias L, Perthame B, Zaag H. Global solutions of some chemotaxis and angiogenesis system in high space dimensions. Milan J Math, 2004, 72: 1-28

DOI

3
Duan R J, Lorz A, Markowich P. Global solutions to the coupled chemotaxis-fluid equations. Comm Partial Differential Equations, 2010, 35(9): 1635-1673

DOI

4
Duan R J, Ma H F. Global existence and convergence rates for 3-D compressible Navier-Stokes equations without heat conductivity. Indiana Univ Math J, 2008, 57(5): 2299-2319

DOI

5
Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci, 2007, 17(5): 737-758

DOI

6
Gueron S, Liron N. A model of herd grazing as a traveling wave: chemotaxis and stability. J Math Biol, 1989, 27: 595-608

DOI

7
Guo J, Xiao J X, Zhao H J, Zhu C J. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Math Sci Ser B Engl Ed, 2009, 29(3): 629-641

8
Hoff D, Zumbrun K.Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 604-676

DOI

9
Horstmann D, Stevens A. A constructive approach to travelling waves in chemotaxis. J Nonlinear Sci, 2004, 14: 1-25

DOI

10
Horstmanna D, Winklerb M. Boundedness vs. blow-up in a chemotaxis system. J Differential Equations, 2005, 215: 52-107

DOI

11
Kato S. On local and global existence theorems for a nonautonomous differential equation in a Banach space. Funkcial Ekvac, 1976, 19: 279-286

12
Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis. Kyoto: Kyoto University, 1984

13
Keller E F, Segel L A. Traveling bands of chemotactic bacteria: A theoretical analysis. J Theor Biol, 1971, 30: 235-248

DOI

14
Kinami S, Mei M, Omata S. Convergence to diffusion waves of the solutions for Benjamin-Bona-Mahony-Burgers equations. Appl Anal, 2000, 75: 317-340

DOI

15
Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57: 683-730

DOI

16
Lui R, Wang Z A. Traveling wave solutions from microscopic to macroscopic chemotaxis models. J Math Biol, 2010, 61: 739-761

DOI

17
Marcati P, Mei M, Rubino B. Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping. J Math Fluid Mech, 2005, 7: S224-S240

DOI

18
Matsumura A. On the asymptotic behavior of solutions of semi-linear wave equation. Publ RIMS Kyoto Univ, 1976, 12: 169-189

DOI

19
Mei M. Lq-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations. J Differential Equations, 1999, 158: 314-340

DOI

20
Nagai T, Ikeda T. Traveling waves in a chemotaxis model. J Math Biol, 1991, 30: 169-184

DOI

21
Nirenberg L. On elliptic partial differential equations. Annali della Scuola Normale Superiore diPisa-Classe di Scienze, 1959, 13(2): 115-162

22
Nishida T. Nonlinear hyperbolic equations and related topics in fluid dynamics. Publ Math, 1978, 128: 1053-1068

23
Othmer H G, Stevens A. Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks. SIAM J Appl Math, 1997, 57: 1044-1081

DOI

24
Segal I E. Quantization and dispersion for nonlinear relativistic equations. In: Proc Conf on Math Theory of Elementary Particles. Cambridge: MIT Press, 1966, 79-108

25
Smoller J. ShockWaves and Reaction-Diffusion Equations. Berlin-New York: Springer-Verlag, 1983

DOI

26
Ukai S, Yang T, Zhao H J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Diff Equ, 2006, 3: 561-574

DOI

27
Wang Y J, Tan Z. Optimal decay rates for the compressible fluid models of Korteweg type. J Math Anal Appl, 2011, 379: 256-271

DOI

28
Yang Y, Chen H, Liu W A. On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J Math Anal, 2001, 33: 763-785

DOI

29
Zhang M, Zhu C J. Global existence of solutions to a hyperbolic-parabolic system. Proc Amer Math Soc, 2007, 135(4): 1017-1027

DOI

30
Zhang Y H, Tan Z, Lai B S, Sun M B. Global analysis of smooth solutions to a generalized hyperbolic-parabolic system modeling chemotaxis. Chinese Ann Math Ser A, 2012, 33: 27-38 (in Chinese)

31
Zhang Y H, Tan Z, Sun M B. Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system. Nonlinear Anal Real World Appl, 2013, 14: 465-482

DOI

32
Zhang Y H, Tan Z, Sun M B. Global smooth solutions to a coupled hyperbolic-parabolic system. Chinese Ann Math Ser A, 2013, 34: 29-46 (in Chinese)

Options
Outlines

/