RESEARCH ARTICLE

Exact construction of noncommutative instantons

  • Masashi HAMANAKA , 1 ,
  • Toshio NAKATSU 2
Expand
  • 1. Department of Mathematics, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
  • 2. Institute for Fundamental Sciences, Setsunan University, 17-8 Ikeda Nakamachi, Neyagawa, Osaka 572-8508, Japan

Received date: 10 Nov 2012

Accepted date: 28 Nov 2012

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We discuss the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of U(N) instantons in noncommutative (NC) space and give some exact instanton solutions for various noncommutative settings. We also present a new formula which is crucial to show an origin of the instanton number for U(1) and to prove the one-to-one correspondence between moduli spaces of the noncommutative instantons and the ADHM data.

Cite this article

Masashi HAMANAKA , Toshio NAKATSU . Exact construction of noncommutative instantons[J]. Frontiers of Mathematics in China, 2013 , 8(5) : 1031 -1046 . DOI: 10.1007/s11464-013-0281-2

1
Aganagic M, Gopakumar R, Minwalla S, Strominger A. Unstable solitons in noncommutative gauge theory. J High Energy Phys, 2001, 0104: 001

2
Atiyah M F, Hitchin N J, Drinfeld V G, Manin Yu I. Construction of instantons. Phys Lett A, 1978, 65(3): 185-187

DOI

3
Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Y S. Pseudoparticle solutions of the Yang-Mills equations. Phys Lett B, 1975, 59: 85-87

DOI

4
Chu C-S. Non-commutative geometry from strings. hep-th/0502167

5
Corrigan E, Goddard P, Osborn H, Templeton S. Zeta function regularization and multi-instanton determinants. Nucl Phys B, 1979, 159: 469-496

DOI

6
Dorey N, Hollowood T J, Khoze V V, Mattis M P. The calculus of many instantons. Phys Rep, 2002, 371: 231-459

DOI

7
Douglas M R, Nekrasov N A. Noncommutative field theory. Rev Modern Phys, 2002, 73: 977-1029

DOI

8
Furuuchi K. Instantons on noncommutative R4and projection operators. Progr Theoret Phys, 2000, 103: 1043-1068

DOI

9
Furuuchi K. Equivalence of projections as gauge equivalence on noncommutative space. Comm Math Phys, 2001, 217: 579-593

DOI

10
Furuuchi K. Topological charge of U(1) instantons on noncommutative R4. hep-th/0010006

11
Furuuchi K. Dp-D(p + 4) in noncommutative Yang-Mills. J High Energy Phys, 2001, 0103: 033

12
Hamanaka M. Atiyah-Drinfeld-Hitchin-Manin and Nahm Constructions of localized solitons in noncommutative gauge theories. Phys Rev D, 2002, 65: 085022

DOI

13
Hamanaka M. Noncommutative solitons and D-branes. Ph D Thesis, University of Tokyo. 2003, hep-th/0303256

14
Hamanaka M. Noncommutative Ward’s conjecture and integrable systems. Nuclear Phys B, 2006, 741: 368-389

DOI

15
Hamanaka M, Nakatsu T. ADHM construction and group actions for noncommutative instantons

16
Hamanaka M, Nakatsu T. Noncommutative instantons revisited. J Phys: Conference Ser (to appear)

17
Harvey J A. Komaba Lectures On Noncommutative Solitons And D-branes. hep-th/0102076

18
Ishikawa T, Kuroki S I, Sako A. Instanton number calculus on noncommutative R4. J High Energy Phys, 2002, 0208: 028

19
Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry. Phys Rep, 2002, 360: 353-421

DOI

20
Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry, II. Phys Rep, 2002, 360: 422-465

DOI

21
Lechtenfeld O. Noncommutative instantons and solitons. Fortschr Phys, 2004, 52: 596

DOI

22
Maeda Y, Sako A. Noncommutative deformation of spinor zero mode and ADHM construction. J Math Phys, 2012, 53: 022303

DOI

23
Mason L J, Woodhouse N M. Integrability, Self-Duality, and Twistor Theory. Oxford: Oxford Univ Press, 1996

24
Moyal J E. Quantum mechanics as a statistical theory. Proc Cambridge Phil Soc, 1949, 45: 99-124

DOI

25
Nakajima H. Resolutions of moduli spaces of ideal instantons on R4. In: Topology, Geometry and Field Theory. Singapore World Sci, 1994, 129-136

26
Nakajima H.Lectures on Hilbert Schemes of Points on Surfaces. Providence: Amer Math Soc, 1999

27
Nakajima H, Yoshioka K. Instanton counting on blowup. I. Invent Math, 2005, 162: 313-355

DOI

28
Nekrasov N A. Trieste Lectures on Solitons in Noncommutative Gauge Theories. hep-th/0011095

29
Nekrasov N A. Seiberg-Witten prepotential from instanton counting. Adv Theor Math Phys, 2004, 7: 831-864

30
Nekrasov N, Schwarz A. Instantons on noncommutative R4, and (2,0) superconformal six dimensional theory. Comm Math Phys, 1998, 198: 689-703

DOI

31
Osborn H. Calculation of multi-instanton determinants. Nuclear Phys B, 1979, 159: 497-511

DOI

32
Penrose R. Twistor algebra. J Math Phys, 1967, 8: 345-366

DOI

33
Sako A. Instanton number of noncommutative U(n) gauge theory. J High Energy Phys, 2003, 04: 023

34
Schaposnik F A. Noncommutative solitons and instantons. Braz J Phys, 2004, 34: 1349-1357

DOI

35
Seiberg N, Witten E. String theory and noncommutative geometry. J High Energy Phys, 1999, 9909: 032

36
Szabo R J. Quantum field theory on noncommutative spaces. Phys Rep, 2003, 378: 207-299

DOI

37
Tian Y. Topological charge of ADHM instanton on ℝNC2×ℝ2. Modern Phys Lett A, 2004, 19: 1315-1317

DOI

38
Tian Y, Zhu C J, Song X C. Topological charge of noncommutative ADHM instanton. Modern Phys Lett A, 2003, 18: 1691-1703

DOI

39
Ward R S. Integrable and solvable systems, and relations among them. Philos Trans R Soc Lond Ser A, 1985, 315: 451-457

DOI

40
Ward R S, Wells R O. Twistor Geometry and Field Theory. Cambridge: Cambridge Univ Press, 1990

DOI

Options
Outlines

/