Frontiers of Mathematics in China >
Boundedness of Calderón-Zygmund operators with finite non-doubling measures
Received date: 15 Jan 2012
Accepted date: 06 Apr 2012
Published date: 01 Aug 2013
Copyright
Let μ be a nonnegative Radon measure on which satisfies the polynomial growth condition that there exist positive constants C0 and n ∈ (0, d] such that, for all x ∈ and r>0, μ(B(x, r))≤, where B(x, r) denotes the open ball centered at x and having radius r. In this paper, we show that, if μ()<∞, then the boundedness of a Calderón-Zygmund operator T on L2(μ) is equivalent to that of T from the localized atomic Hardy space h1(μ) to L1,∞(μ) or from h1(μ) to L1(μ).
Dachun YANG , Dongyong YANG . Boundedness of Calderón-Zygmund operators with finite non-doubling measures[J]. Frontiers of Mathematics in China, 2013 , 8(4) : 961 -971 . DOI: 10.1007/s11464-013-0210-4
1 |
Chen W, Meng Y, Yang D C. Calderón-Zygmund operators on Hardy spaces without the doubling condition. Proc Amer Math Soc, 2005, 133: 2671-2680
|
2 |
Fu X, Hu G, Yang D C. A remark on the boundedness of Calderón-Zygmund operators in non-homogeneous spaces. Acta Math Sin (Engl Ser), 2007, 23: 449-456
|
3 |
Hu G, Yang D C, Yang D Y. Weighted estimates for commutators of singular integral operators with non-doubling measures. Sci China Ser A, 2007, 50: 1621-1641
|
4 |
Hu G, Yang D C, Yang D Y. h1, bmo, blo and Littlewood-Paley g-functions with non-doubling measures. Rev Mat Iberoam, 2009, 25: 595-667
|
5 |
Liu S, Yang D C, Yang D Y. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations. J Math Anal Appl, 2012, 386: 258-272
|
6 |
Nazarov F, Treil S, Volberg A. Weak type estimates and Cotlar inequalities for Calderón- Zygmund operators on nonhomogeneous spaces. Int Math Res Not, 1998: 463-487
|
7 |
Nazarov F, Treil S, Volberg A. The Tb-theorem on non-homogeneous spaces. Acta Math, 2003, 190: 151-239
|
8 |
Tolsa X.BMO, H1, and Calderón-Zygmund operators for non doubling measures. Math Ann, 2001, 319: 89-149
|
9 |
Tolsa X. Littlewood-Paley theory and the T(1) theorem with non-doubling measures. Adv Math, 2001, 164: 57-116
|
10 |
Tolsa X. Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math, 2003, 190: 105-149
|
11 |
Tolsa X. The space H1 for non-doubling measures in terms of a grand maximal operators. Trans Amer Math Soc, 2003, 355: 315-348
|
12 |
Tolsa X. The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Amer J Math, 2004, 126: 523-567
|
13 |
Yang D C, Yang D Y. Boundedness of linear operators via atoms on Hardy spaces with non-doubling measures. Georgian Math J, 2011, 18: 377-397
|
14 |
Yang D C, Yang D Y, Hu G. The Hardy Space H1 with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics, Vol 2084. Berlin: Springer-Verlag, 2013
|
/
〈 | 〉 |