RESEARCH ARTICLE

Generalized Jacobi-Gauss-Lobatto interpolation

  • Zhengsu WAN 1,2 ,
  • Benyu GUO 3 ,
  • Chengjian ZHANG , 1
Expand
  • 1. School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China
  • 3. Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Received date: 20 Sep 2011

Accepted date: 28 Nov 2012

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We introduce the generalized Jacobi-Gauss-Lobatto interpolation involving the values of functions and their derivatives at the endpoints, which play important roles in the Jacobi pseudospectral methods for high order problems. We establish some results on these interpolations in non-uniformly weighted Sobolev spaces, which serve as the basic tools in analysis of numerical quadratures and various numerical methods of differential and integral equations.

Cite this article

Zhengsu WAN , Benyu GUO , Chengjian ZHANG . Generalized Jacobi-Gauss-Lobatto interpolation[J]. Frontiers of Mathematics in China, 2013 , 8(4) : 933 -960 . DOI: 10.1007/s11464-013-0271-4

1
Askey R. Orthogonal Polynomials and Special Functions. Regional Conference Series in Applied Mathematics, Vol 21. Philadelphia: SIAM, 1975

DOI

2
Babuška I, Guo B Q. Direct and inverse approximation theorems for the p-version of finite element method in the framework of weighted Besov spaces. Part I: Approximability of functions in the weighted Besov space. SIAM J Numer Anal, 2001, 39: 1512-1538

DOI

3
Belhachmi Z, Bernardi C, Karageorghis A. Spectral element discretization of the circular driven cavity. Part II: The bilaplacian equation. SIAM J Numer Anal, 2001, 38: 1926-1960

DOI

4
Bergh J, Löfström J. Interpolation Spaces, An Introduction. Berlin: Spinger-Verlag, 1976

DOI

5
Bernardi C, Dauge M, Maday Y. Spectral Methods for Axisymmetric Domains. Series in Applied Mathematics, Vol 3. Paris: Gauhtier-Villars & North-Holland, 1999

6
Bernardi C, Maday Y. Spectral methods. In: Ciarlet P G, Lions P L, eds. Handbook of Numerical Analysis, Vol 5, Techniques of Scientific Computing. Amsterdam: Elsevier, 1997, 209-486

7
Bernardi C, Maday Y. Some spectral approximations of one-dimensional fourth-order problems. In: Nevai P, Pinkus A, eds. Progress in Approximation Theory. San Diego: Academic Press, 1991, 43-116

8
Bernardi C, Maday Y. Polynomial interpolation results in Sobolev spaces. J Comput Appl Math, 1992, 43: 53-80

DOI

9
Bialecki B, Karageorghis A. A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J Sci Comput, 2000, 22: 1549-1569

DOI

10
Bjϕrstad P E, Tjϕstheim B P. Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method. SIAM J Sci Comput, 1997, 18: 621-632

DOI

11
Boyd J P. Chebyshev and Fourier Spectral Methods. 2nd ed. Mineola: Dover, 2001

12
Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods in Fluid Dynamics. Berlin: Springer-Verlag, 1998

13
Dubiner M. Spectral methods on triangles and other domains. J Sci Comput, 1991, 6: 345-390

DOI

14
Ezzirani A, Guessab A. A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations. Math Comp, 1999, 225: 217-248

DOI

15
Gottlieb D, Orszag S A. Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia: SIAM, 1977

DOI

16
Guo B Y. Spectral Methods and Their Applications. Singapore: World Scientific, 1998

DOI

17
Guo B Y. Gegenbauer approximation and its applications to differential equations on the whole line. J Math Anal Appl, 1998, 226: 180-206

DOI

18
Guo B Y. Jacobi spectral approximation and its applications to differential equations on the half line. J Comput Math, 2000, 18: 95-112

19
Guo B Y. Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations on the whole line. SIAM J Numer Anal, 2000, 37: 621-645

20
Guo B Y. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J Math Anal Appl, 2000, 243: 373-408

DOI

21
Guo B Y, Shen J, Wang Z Q. A rational approximation and its applications to differential equations on the half line. J Sci Comput, 2000, 15: 117-148

DOI

22
Guo B Y, Shen J, Wang Z Q. Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. Int J Numer Meth Engrg, 2002, 53: 65-84

DOI

23
Guo B Y, Wang L L. Jacobi interpolation approximations and their applications to singular differential equations. Adv Comput Math, 2000, 14: 227-276

24
Guo B Y, Wang L L. Error analysis of spectral method on a triangle. Adv Comput Math, 2007, 26: 473-496

DOI

25
Guo B Y, Wang L L. Jacobi approximations and Jacobi-Gauss-type interpolations in non-uniformly Jacobi-weighted Sobolev spaces. J Approx Theory, 2004, 28: 1-41

DOI

26
Guo B Y, Wang Z Q, Wan Z S, Chu D L. Second order Jacobi approximation with applications to fourth-order differential equations. Appl Numer Math, 2005, 55: 480-502

DOI

27
Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952

28
Junghanns V P. Uniform convergence of approximate methods for Cauchy type singular equation over (-1, 1). Wissenschaftliche Zeitschrift Technische Hocschule, Karl-Mars Stadt, 1984, 26: 250-256

29
Karniadakis G, Sherwin S. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford: Oxford University Press, 1999

30
Owens R G. Spectral approximation on the triangle. Proc R Soc Lond Ser A, 1998, 454: 857-872

31
Shen J. Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J Sci Comput, 1994, 15: 1489-1505

DOI

32
Sherwin S J, Farniadakis G E. A new triangular and tetrahedral basis for high-order finite element methods. Int J Numer Methods Engrg, 1995, 38: 3775-3802

DOI

33
Stephan E P, Suri M. On the convergence of the p-version of the boundary element Galerkin method. Math Comp, 1989, 52: 31-48

34
Szegö G. Orthogonal Polynomials. Providence: Amer Math Soc, 1959

Options
Outlines

/