RESEARCH ARTICLE

Growth of certain harmonic functions in an n-dimensional cone

  • Lei QIAO , 1 ,
  • Guantie DENG 2
Expand
  • 1. Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002, China
  • 2. School of Mathematical Science, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

Received date: 16 Aug 2010

Accepted date: 16 Oct 2012

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give the growth properties of harmonic functions at infinity in a cone, which generalize the results obtained by Siegel-Talvila.

Cite this article

Lei QIAO , Guantie DENG . Growth of certain harmonic functions in an n-dimensional cone[J]. Frontiers of Mathematics in China, 2013 , 8(4) : 891 -905 . DOI: 10.1007/s11464-012-0253-y

1
Armitage D H. Representations of harmonic functions in half-spaces. Proc Lond Math Soc, 1979, 38: 53-71

DOI

2
Azarin V S. Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Amer Math Soc Trans, 1969, 80: 119-138

3
Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. London: Springer-Verlag, 1977

DOI

4
Miranda C. Partial Differential Equations of Elliptic Type. London: Springer-Verlag, 1970

DOI

5
Qiao L, Deng G T. The Riesz decomposition theorem for superharmonic functions in a cone and its application. Sci Sin Math, 2012, 42: 763-774 (in Chinese)

DOI

6
Siegel D, Talvila E. Sharp growth estimates for modified Poisson integrals in a half space. Potential Anal, 2001, 15: 333-360

DOI

7
Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1979

8
Yoshida H, Miyamoto I. Solutions of the Dirichlet problem on a cone with continuous data. J Math Soc Japan, 1998, 50: 71-93

DOI

9
Zhang Y H, Deng G T. Growth properties for a class of subharmonic functions in half space. Acta Math Sinica (Chin Ser), 2008, 51: 319-326

Options
Outlines

/