RESEARCH ARTICLE

Frequentist model averaging for linear mixed-effects models

  • Xinjie CHEN 1 ,
  • Guohua ZOU , 1 ,
  • Xinyu ZHANG 1,2
Expand
  • 1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
  • 2. Center for Forecasting Science, Chinese Academy of Sciences, Beijing 100190, China

Received date: 20 Aug 2012

Accepted date: 15 Oct 2012

Published date: 01 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Linear mixed-effects models are a powerful tool for the analysis of longitudinal data. The aim of this paper is to study model averaging for linear mixed-effects models. The asymptotic distribution of the frequentist model average estimator is derived, and a confidence interval procedure with an actual coverage probability that tends to the nominal level in large samples is developed. The two confidence intervals based on the model averaging and based on the full model are shown to be asymptotically equivalent. A simulation study shows good finite sample performance of the model average estimators.

Cite this article

Xinjie CHEN , Guohua ZOU , Xinyu ZHANG . Frequentist model averaging for linear mixed-effects models[J]. Frontiers of Mathematics in China, 2013 , 8(3) : 497 -515 . DOI: 10.1007/s11464-012-0254-x

1
Buckland S T, Burnham K P, Augustin N H. Model selection: An integral part of inference. Biometrics, 1997, 53: 603-618

DOI

2
Claeskens G, Hjort N L. Model Selection and Model Averaging. New York: Cambridge University Press, 2008

DOI

3
Danilov D, Magnus J R. On the harm that ignoring pretesting can cause. J Econometrics, 2004, 122: 27-46

DOI

4
Di C, Crainiceanu C, Caffo B, Punjabi N. Multilevel functional principal component analysis. Ann Appl Stat, 2008, 3: 458-488

DOI

5
Dimova R B, Markatou M, Talal A H. Information methods for model selection in linear mixed effects models with application to HCV data. Comput Statist Data Anal, 2011, 55: 2677-2697

DOI

6
Draper D. Assessment and propagation of model uncertainty. J Roy Statist Soc Ser B, 1995, 57: 45-97

7
Goldenshluger A. A universal procedure for aggregating estimators. Ann Statist, 2009, 37: 542-568

DOI

8
Greven S, Kneib T. On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika, 2010, 97: 773-789

DOI

9
Hansen B E. Least squares model averaging. Econometrica, 2007, 75: 1175-1189

DOI

10
Hansen B E. Least squares forecast averaging. J Econometrics, 2008, 146: 342-350

DOI

11
Hansen B E. Averaging estimators for autoregressions with a near unit root. J Econometrics, 2010, 158: 142-155

DOI

12
Hansen B E, Racine J. Jackknife model averaging estimators. J Econometrics, 2012, 167: 38-46

DOI

13
Hjort N L, Claeskens G. Frequentist model average estimators. J Amer Statist Assoc, 2003, 98: 879-899

DOI

14
Hjort N L, Claeskens G. Focussed information criteria and model averaging for Cox’s hazard regression model. J Amer Statist Assoc, 2006, 101: 1449-1464

DOI

15
Hodges J S. Some algebra and geometry for hierarchical models, applied to diagnostics (with Discussion). J Roy Statist Soc Ser B, 1998, 60: 497-536

DOI

16
Hoeting J A, Madigan D, Raftery A E, Volinsky C T. Bayesian model averaging: A tutorial. Statist Sci, 1999, 14: 382-417

17
Hodegs J S, Sargent D J. Counting degrees of freedom in hierarchical and other parameterized models. Biometrika, 2001, 88: 367-379

DOI

18
Kabaila P, Leeb H. On the large-sample minimal coverage probability of confidence intervals after model selection. J Amer Statist Assoc, 2006, 101: 619-629

DOI

19
Laird N M, Ware J H. Random-effects models for longitudinal data. Biometrics, 1982, 38: 963-974

DOI

20
Lee Y, Nelder J A. Hierarchical generalized linear models: A synthesis of generalized linear models, random effect models and structured dispersions. Biometrika, 2001, 88: 987-1006

DOI

21
Li Y, Baron J. Behavioral Research Data Analysis with R. New York: Springer, 2012

DOI

22
Liang H, Wu H, Zou G. A note on conditional AIC for linear mixed-effects models. Biometrika, 2008, 95: 773-778

DOI

23
Liang H, Zhang X, Liu A, Ruppert D, Zou G. Selection strategy for covariance structure of random effects in linear mixed-effects models. University of Rochester, Mimeo, 2011

24
Liang H, Zou G, Wan A T K, Zhang X. Optimal weight choice for frequentist model average estimators. J Amer Statist Assoc, 2011, 106: 1053-1066

DOI

25
Liu S, Yang Y. Combining models in longitudinal data analysis. Ann Inst Statist Math, 2012, 64: 233-254

DOI

26
Ngo L, Brand R. Model selection in linear mixed effects models using SAS Proc Mixed. SAS Global Forum 22, 2002

27
Pinheiro J C, Bates D M. Mixed Effects Models in S and S-plus. New York: Springer, 2000

DOI

28
Raftery A, Madigan D, Hoeting J. Bayesian model averaging for linear regression models. J Amer Statist Assoc, 1997, 92: 179-191

DOI

29
Rao J N K. Small Area Estimation. New York: John Wiley, 2003

DOI

30
Schomaker M, Wan A T K, Heumann C. Frequentist model averaging with missing observations. Comput Statist Data Anal, 2010, 54: 3336-3347

DOI

31
Staiger D, Stock J H. Instrumental variables regression with weak instruments. Econometrica, 1997, 65: 557-586

DOI

32
Tarpey T, Petkova E, Lu Y, Govindarajulu U. Optimal partitioning for linear mixed effects models: Applications to identifying placebo responders. J Amer Statist Assoc, 2010, 105: 968-977

DOI

33
Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models. Biometrika, 2005, 92: 351-370

DOI

34
Wan A T K, Zhang X, Zou G. Least squares model averaging by Mallows criterion. J Econometrics, 2010, 156: 277-283

DOI

35
Wang H, Zhang X, Zou G. Frequentist model averaging estimation: A review. J Syst Sci Complex, 2009, 22: 732-748

DOI

36
Wang H, Zou G. Frequentist model average estimation for linear errors-in-variables models. J Syst Sci Math Sci, 2012, 32: 1-14

37
Yang Y. Adaptive regression by mixing. J Amer Statist Assoc, 2001, 96: 574-586

DOI

38
Yuan Z, Yang Y. Combining linear regression models: When and how? J Amer Statist Assoc, 2005, 100: 1202-1214

DOI

39
Zhang X, Liang H. Focused information criterion and model averaging for generalized additive partial linear models. Ann Statist, 2011, 39: 174-200

DOI

40
Zhang X, Wan A T K, Zhou Z. Focused information criteria, model selection and model averaging in a Tobit model with a non-zero threshold. J Bus Econom Statist, 2012, 30: 132-142

DOI

Options
Outlines

/