Generalized Drazin spectrum of upper triangular matrices in Banach algebras

  • Yongfeng PANG ,
  • Dong MA ,
  • Danli ZHANG
Expand
  • Department of Mathematics, School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
pangyongfengyw@xauat.edu.cn

Copyright

2023 Higher Education Press 2023

Abstract

Let A be a Banach algebra with unit e and a,b,cA,Mc=(ac0b)M2(A). The concepts of left and right generalized Drazin invertible of elements in a Banach algebra are proposed. A generalized Drazin spectrum of α is defined by σgD(α)={λC:αλeisnotgeneralizedDrazininvertible}. It is shown that

           σgD(a)σgD(b)=σgD(Mc)W2,

where Wg is a union of certain holes σgD and WgσgD(a)σgD(b), or more finely WgσrgD(a)σlgD(b). In addition, some properties of generalized Drazin spectrum of elements in a Banach algebra are studied.

Cite this article

Yongfeng PANG , Dong MA , Danli ZHANG . Generalized Drazin spectrum of upper triangular matrices in Banach algebras[J]. Frontiers of Mathematics in China, 2023 , 18(6) : 431 -440 . DOI: 10.3868/s140-DDD-023-0030-x

1
Cao X H, Guo M Z, Meng B. Drazin spectrum and Weyl’s theorem for operator matrices. J Math Res Exposition 2006; 26(3): 413–422

2
CaradusS RPfaffenbergerW EYoodB. Calkin Algebras and Algebras of Operators on Banach Spaces. Lecture Notes in Pure and Applied Mathematics, Vol 9. New York: Marcel Dekker, 1974

3
Castro González N, Koliha J J. New additive results for the g-Drazin inverse. Proc Roy Soc Edinburgh Sect A 2004; 134(6): 1085–1097

4
Drazin M P. Pseudo-inverses in associative rings and semigroups. Amer Math Monthly 1958; 65: 506–514

5
Duggal B P. Upper triangular operator matrices, SVEP and Browder, Weyl theorems. Integral Equations Operator Theory 2009; 63(1): 17–28

6
Han J K, Lee H Y, Lee W Y. Invertible completions of 2×2 upper triangular operator matrices. Proc Amer Math Soc 2000; 128(1): 119–123

7
Koliha J J. A generalized Drazin inverse. Glasgow Math J 1996; 38(3): 367–381

8
Lin L Q. The filling-in-holes of spectra of upper triangular matrices over Banach algebras. J Xiamen Univ (Nat Sci) 2012; 51(2): 153–156

9
MurphyG J. C*-algebras and Operator Theory. Boston, MA: Academic Press, 1990

10
Zhang H Y, Zhang X H, Du H K. Drazin spectra of 2×2 upper triangular operator matrices. Acta Math Sci Ser A (Chin Ed) 2009; 29(2): 278–282

11
Zhang S F, Zhong H J, Jiang Q F. Drazin spectrum of operator matrices on the Banach space. Linear Algebra Appl 2008; 429(8/9): 2067–2075

12
Zhang S F, Zhong H J, Lin L Q. Generalized Drazin spectrum of operator matrices. Appl Math J Chinese Univ Ser B 2014; 29(2): 162–170

Outlines

/