Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras

  • Demin YU , 1 ,
  • Caihui LU 2
Expand
  • 1. College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414000, China
  • 2. School of Mathematical Sciences, Capital Normal University, Beijing 100037, China
yudeming8640024@126.com

Published date: 15 Oct 2023

Copyright

2023 Higher Education Press 2023

Abstract

In this paper, a new infinite-dimensional necklace Lie algebra is studied and the left and right index arrays of a necklace word in necklace Lie algebra is first defined. Using the left and right index arrays, we divide the necklace words into 5 classes. We discuss finite-dimensional Lie subalgebras of necklace Lie algebras intensively and prove that some subalgebras are isomorphism to simple Lie algebra sl(n).

Cite this article

Demin YU , Caihui LU . Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras[J]. Frontiers of Mathematics in China, 2023 , 18(5) : 353 -365 . DOI: 10.3868/s140-DDD-023-0025-x

1
Bocklandt R, Le Bruyn L. Necklace Lie algebras and noncommutative symplectic geometry. Math Z 2002; 240(1): 141–167

2
Ginzburg V. Non-commutative symplectic geometry, quiver varieties, and operads. Math Res Lett 2001; 8(3): 377–400

3
Guo J Y, Martínez-Villa R. Algebra pairs associated to McKay quivers. Comm Algebra 2002; 30(2): 1017–1032

4
LothaireM. Combinations on Words. Encyclopedia Math Appl, Vol 17. Reading: Addison-Wesley Publishing Co, 1983

5
Mei C Q, Yu D M. The structure of Necklace Lie algebras. Math Pract Theory 2012; 42(1): 195–204

6
Peng L G. Lie algebras determined by finite Auslander-Reiten quivers. Comm Algebra 1998; 26(9): 2711–2725

7
Post G F. On the structure of transitively differential algebras. J Lie Theory 2001; 11(1): 111–128

8
ReutenauerC. Free Lie Algebras. London Math Soc Monogr Ser, Vol 7. Oxford: Clarendon Press, 1993

9
Yu D M, Li B J, Wan Q H. The automorphism group and simplicity of the generalized Virasoro-like Lie algebra. Adv Math (China) 2013; 42(5): 620–624

10
Yu D M, Lu C H. Special property of Lie algebra L(Z, f, δ). Adv Math (China) 2006; 35(6): 707–711

11
Yu D M, Mei C Q, Guo J Y. Homomorphisms of some special necklace Lie algebras. Chinese Ann Math Ser A 2009; 30(4): 551–562

12
Yu D M, Mei C Q, Guo J Y. Automorphisms and automorphism groups of Necklace Lie algebras. Chinese Ann Math Ser A 2013; 34(5): 569–578

Outlines

/