A survey of the study of combinatorial batch code

  • Dongdong JIA 1 ,
  • Yuebo SHEN 2 ,
  • Gengsheng ZHANG , 3
Expand
  • 1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
  • 2. Information Department, Children's Hospital of Hebei Province, Shijiazhuang 050031, China
  • 3. Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang 050024, China
gshzhang@hebtu.edu.cn

Published date: 15 Oct 2023

Copyright

2023 Higher Education Press 2023

Abstract

A combinatorial batch code has strong practical motivation in the distributed storage and retrieval of data in a database. In this survey, we give a brief introduction to the combinatorial batch codes and some progress.

Cite this article

Dongdong JIA , Yuebo SHEN , Gengsheng ZHANG . A survey of the study of combinatorial batch code[J]. Frontiers of Mathematics in China, 2023 , 18(5) : 301 -312 . DOI: 10.3868/s140-DDD-023-0024-x

1
Balachandran N, Bhattacharya S. On an extremal hypergraph problem related to combinatorial batch codes. Discrete Appl Math 2014; 162: 373–380

2
Bhattacharya S, Ruj S, Roy B. Combinatorial batch codes: a lower bound and optimal constructions. Adv Math Comm 2012; 6(2): 165–174

3
Brualdi R A, Kiernan K P, Meyer S A, Schroeder M W. Combinatorial batch codes and transversal matroids. Adv Math Comm 2010; 4: 419–431

4
Brualdi R A, Kiernan K P, Meyer S A, Schroeder M W. Erratum to “Combinatorial batch codes and transversal matroids”. Adv In Math Comm 2010; 4(3): 597

5
Bujtás C, Tuza Z. Combinatorial batch codes: extremal problems under Hall-type conditions. Electron Notes Discrete Math 2011; 38: 201–206

6
Bujtás C, Tuza Z. Optimal batch codes: many items or low retrieval requirement. Adv Math Comm 2011; 5(3): 529–541

7
Bujtás C, Tuza Z. Optimal combinatorial batch codes derived from dual systems. Miskolc Math Notes 2011; 12(1): 11–23

8
Bujtás C, Tuza Z. Relaxations of Hall’s condition: optimal batch codes with multiple queries. Appl Anal Discrete Math 2012; 6(1): 72–81

9
Bujtás C, Tuza Z. Turán numbers and batch codes. Discrete Appl Math 2015; 186: 45–55

10
Chen J F, Zhang S M, Zhang G S. Optimal combinatorial batch code: monotonicity, lower and upper bounds. Sci Sin Math 2015; 45(3): 311–320

11
ChenS B. A New Combinatorial Batch Code. Master Thesis. Beijing: Beijing Jiaotong University, 2010 (in Chinese)

12
IshaiYKushilevitzEOstrovskyRSahaiA. Batch codes and their applications, In: STOC’04 (Proceedings of the 36th Annual ACM Symposium on Theory of Computing). New York, 2004, 262–271

13
Jia D D, Zhang G S, Yuan L D. A class of optimal combinatorial batch code. Acta Math Sin, Chin Ser 2016; 59(2): 267–278

14
Liu X, Zhang S M, Zhang G S. Combinatorial batch codes based on RTD (q−2, q). Adv Math (China) 2016; 45(5): 700–710

15
Patterson M B, Stinson D R, Wei R. Combinatorial batch codes. Adv Math Comm 2009; 3(1): 13–27

16
RujSRoyB. More on combinatorial batch codes. arXiv: 0809.3357v1

17
Silberstein N, Gál A. Optimal combinatorial batch codes based on block designs. Des Codes and Cryptogr 2016; 78: 409–424

Outlines

/