RESEARCH ARTICLE

L1 Boundedness of a class of rough Fourier integral operators

  • Xiangrong ZHU ,
  • Yuchao MA
Expand
  • School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
15225808538@163.com

Published date: 15 Aug 2023

Copyright

2023 Higher Education Press 2023

Abstract

In this note, we consider a class of Fourier integral operators with rough amplitudes and rough phases. When the index of symbols in some range, we prove that they are bounded on L1 and construct an example to show that this result is sharp in some cases. This result is a generalization of the corresponding theorems of Kenig-Staubach and Dos Santos Ferreira-Staubach.

Cite this article

Xiangrong ZHU , Yuchao MA . L1 Boundedness of a class of rough Fourier integral operators[J]. Frontiers of Mathematics in China, 2023 , 18(4) : 235 -249 . DOI: 10.3868/s140-DDD-023-0019-x

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11871436) and the National Key Research and Development Program of China (No. 2022YFA1005700)
1
Asada K, Fujiwara D. On some oscillatory integral transformations in L2(Rn). Japan J Math (N S) 1978; 4(2): 299–361

2
Beals R. Spatially inhomogeneous pseudodifferential operators, II. Comm Pure Appl Math 1974; 27: 161–205

3
Beals R. Lp boundedness of Fourier integral operators. Mem Amer Math Soc 1982; 38(264): viii+57 pp

4
Calderón A P, Vaillancourt R. On the boundedness of pseudo-differential operators. J Math Soc Japan 1971; 23(2): 374–378

5
Dos Santos Ferreira D, Staubach W. Global and local regularity of Fourier integral operators on weighted and unweighted spaces. Mem Amer Math Soc 2014; 229(1074): xiv+65 pp

6
Duistermaat J, Hörmander L. Fourier integral operators, II. Acta Math 1972; 128(3/4): 183–269

7
Eskin G I. Degenerate elliptic pseudodifferential equations of principal type. Mat Sb (N S) 1970; 82(124): 585–628

8
Greenleaf A, Uhlmann G. Estimates for singular Radon transforms and pseudodifferential operators with singular symbols. J Funct Anal 1990; 89(1): 202–232

9
Higuchi Y, Nagase M. On the L2-boundedness of pseudo-differential operators. J Math Kyoto Univ 1988; 28(1): 133–139

10
Hörmander L. On the L2 continuity of pseudo-differential operators. Comm Pure Appl Math 1971; 24: 529–535

11
Hörmander L. Fourier integral operators, I. Acta Math 1971; 127(1/2): 79–183

12
Kenig C E, Staubach W. ψ-pseudodifferential operators and estimates for maximal oscillatory integrals. Studia Math 2007; 183(3): 249–258

13
Peloso M, Secco S. Boundedness of Fourier integral operators on Hardy spaces. Proc Edinburgh Math Soc 2008; 51(2): 443–463

14
Peral J. Lp estimates for the wave equation. J Funct Anal 1980; 36(1): 114–145

15
Ruzhansky M, Sugimoto M. Global L2-boundedness theorems for a class of Fourier integral operators. Comm Partial Differential Equations 2006; 31(4): 547–569

16
Ruzhansky M, Sugimoto M. A local-to-global boundedness argument and Fourier integral operators. J Math Anal Appl 2019; 473(2): 892–904

17
Rodino L. On the boundedness of pseudo differential operators in the class Lp,1m. Proc Amer Math Soc 1976; 58: 211–215

18
Seeger A, Sogge C D, Stein E M. Regularity properties of Fourier integral operators. Ann Math 1991; 134(2): 231–251

19
SteinMMurphyT S. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. New Jersey: Princeton University Press, 1993

20
Tao T. The weak-type (1, 1) of Fourier integral operators of order −(n−1)/2. J Aust Math Soc 2004; 76(1): 1–21

Outlines

/