RESEARCH ARTICLE

A parametric family of quartic Thue equations

  • Zhigang LI , 1 ,
  • Pingzhi YUAN 2
Expand
  • 1. School of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan 411201, China
  • 2. School of Mathematics, South China Normal University, Guangzhou 510631, China
zhigangli_cn@yahoo.com.cn

Copyright

2023 Higher Education Press 2023

Abstract

In this paper,we give all primitive solutions of a parameterized family of quartic Thue equations:

      x44cx3y+(6c+2)x2y2+4cxy3+y4=96c+169,c>0.

Cite this article

Zhigang LI , Pingzhi YUAN . A parametric family of quartic Thue equations[J]. Frontiers of Mathematics in China, 2023 , 18(3) : 147 -163 . DOI: 10.3868/s140-DDD-023-0016-x

1
Baker A. Contributions to the theory of Diophantine equations I, on the representation of integers by binary forms. Philos Thans Roy Soc London Ser A 1968; 263: 273–291

2
Baker A, Davenport H. The equation 3x2−2=y2 and 8x2−7=z2. Quart J Math Oxford 1969; 20(2): 129–137

3
Baker A, Wüstholz G. Logarithmic forms and group varieties. J Reine Angew Math 1993; 442: 19–62

4
Bennett M A. On the number of solutions of simultaneous Pell equations. J. Reine Angew Math 1998; 498: 173–199

5
Bilu Y, Hanrot G. Solving Thue equations of high degree. J Number Theory 1996; 60: 373–392

6
Dujella A, Pethö A. Generalization of a theorem of Baker and Davenport. Quart J Math Oxford 1998; 49: 291–306

7
Dujella A, Jadrijević B. A parametric family of quartic Thue equations. Acta Arith 2002; 101: 159–170

8
Dujella A. A family of quartic Thue inequalities. Acta Arith 2004; 111: 61–76

9
Dujella A. Continued fractions and RSA with small secret exponent. Tatra Mt Math Publ 2004; 29: 101–112

10
Fatou P. Sur l’approximation des incommenurables et les series trigonometriques. C R Acad Sci Paris 1904; 139: 1019–1021

11
GaálI. Diophantine Equations and Power Integral Bases: New computational Methods. New York: Springer-Verlag, 2002

12
Heuberger C, Pethö A, Tichy R F. Complete solution of parametrized Thue equations. Acta Math Inform Univ Ostraviensis 1998; 6: 93–113

13
HuaL K. Introduction to Number Theory. New York: Springer, 1982

14
KeZSunQ. Talking about Indeterminate Equations. New York: Shanghai Educational Publishing House, 1980

15
Pethö A, Schulenberg R. Effectives Lösen von Thue Gleichungen. Publ Math Debrecen 1987; 34: 189–196

16
Thomas E. Complete solutions to a family of cubic Diophantine equations. J Number Theory 1990; 34: 235–250

17
Thue A. Über Annäherungswerte algebraischer Zahlen. J Reine Angew Math 1909; 135: 284–305

18
Tzanakis N, de Weger B M M. On the Practical Solution of the Thue Equation. J Number Theory 1989; 31: 99–132

19
Tzanakis N. Explicit solution of a class of quartic Thue equations. Acta Arith 1993; 64: 271–283

20
Worley R T. Estimating |α−p/q|. J Austral Math Soc 1981; 31: 202–206

Outlines

/