SURVEY ARTICLE

Semipermutable subgroups and s-semipermutable subgroups in finite groups

  • Yangming LI
Expand
  • School of Mathematics, Guangdong University of Education, Guangzhou 510310, China

Published date: 15 Feb 2022

Copyright

2022 Higher Education Press

Abstract

Suppose that H is a subgroup of a finite group G. We call H is semipermutable in G if HK = KH for any subgroup K of G such that (|H|, |K|) = 1; H is s-semipermutable in G if HGp = GpH, for any Sylow p-subgroup Gp of G such that (|H|, p) = 1. These two concepts have been received the attention of many scholars in group theory since they were introduced by Professor Zhongmu Chen in 1987. In recent decades, there are a lot of papers published via the application of these concepts. Here we summarize the results in this area and gives some thoughts in the research process.

Cite this article

Yangming LI . Semipermutable subgroups and s-semipermutable subgroups in finite groups[J]. Frontiers of Mathematics in China, 2022 , 17(1) : 23 -46 . DOI: 10.1007/s11464-022-1002-5

1
Al-sharo D M , Sulaiman H . On some relations of subnormal subgroups and semipermutability of a finite group. In: Proceedings of the 21st National Symposium on Mathematical Sciences (SKSM21), AIP Conf. Proc., Vol. 1605, Melville, NY: AIP Publishing, 2014, 628- 632

2
Al-sharo K A , Beidleman J C , Heineken H , Ragland M F . Some characterizations of finite groups in which semipermutability is a transitive relation. Forum Math., 2010, 22 (5): 855- 862

3
Asaad M . On maximal subgroups of Sylow subgroups of finite groups. Comm. Algebra, 1998, 26 (11): 3647- 3652

DOI

4
Asaad M . Finite groups with given nearly s-embedded subgroups. Acta Math. Hungar., 2014, 144 (2): 499- 514

DOI

5
Asaad M , Csörgö P . The influence of minimal subgroups on the structure of finite groups. Arch. Math., 1999, 72: 401- 404

DOI

6
Asaad M , Ramadan M , Shaalan A . The influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fitting subgroups of a finite group. Arch. Math., 1991, 56: 521- 527

DOI

7
Ballester-Bolinches A , Beidleman J C , Esteban-Romero R , Ragland M F . On a class of supersoluble groups. Bull. Aust. Math. Soc., 2014, 90 (2): 220- 226

DOI

8
Ballester-Bolinches A , Esteban-Romero R , Asaad M . Products of Finite Groups. New York: Walter de Gruyter, 2010

9
Ballester-Bolinches A , Esteban-Romero R , Qiao S . A note on a result of Guo and Isaacs about p-supersolubility of finite group. Arch. Math., 2016, 106: 501- 506

DOI

10
Ballester-Bolinches A , Ezquerro L M , Skiba A N . Local embeddings of some families of subgroups of finite groups. Acta Math. Sin. (Engl. Ser.), 2009, 25: 869- 882

DOI

11
Ballester-Bolinches A , Li Y M , Su N , Xie Z . On π-S-permutable subgroups of finite groups. Mediterr. J. Math., 2016, 13 (1): 93- 99

DOI

12
Ballester-Bolinches A , Wang Y , Guo X Y . c-supplemented subgroups of finite groups. Glasgow Math. J., 2000, 42: 383- 389

DOI

13
Beidleman J C , Ragland M F . Subnormal, permutable and embedded subgroups in finite groups. Cent. Eur. J. Math., 2011, 9 (4): 915- 921

DOI

14
Berkovich Y , Isaacs I M . p-supersolvability and actions on p-groups stabilizing certain subgroups. J. Algebra, 2014, 414: 82- 94

DOI

15
Buckley J . Finite groups whose minimal subgroups are normal. Math. Z., 1970, 116: 15- 17

DOI

16
Chen X , Guo W B . On weakly S-embedded and weakly τ-embedded subgroups. Sib. Math. J., 2013, 54 (5): 931- 945

DOI

17
Chen Z M . Generalization of the Schur-Zassenhaus theorem. J. Math., 1998, 18 (3): 290- 294

18
Chen Z M . Inner and Outer Σ-groups and Minimal Non Σ-groups, Chongqing: Southwest Normal University Press, 1988 (in Chinese)

19
Chen Z M . On a theorem of Srinivasan. Southwest Normal Univ. Nat. Sci., 1987, 12 (1): 1- 4 (in Chinese)

20
Dedekind R . Über Gruppen, deren sámtliche Teiler Normalteiler sind, Math. Ann., 1897, 48: 548- 561

DOI

21
Deskin W E . On quasinormal subgroups of finite groups. Math. Z., 1963, 82: 125- 132

DOI

22
Doerk K , Hawkes T . Finite Soluble Groups, De Gruyter Expositions in Mathematics, Vol. 4. Berlin: Walter de Gruyter, 1992

23
Gorenstein D . Finite Groups. New York: Chelsea, 1968

24
Guo W B . On F-supplemented subgroups of finite groups. Manuscripta Math., 2008, 127: 139- 150

DOI

25
Guo X Y , Zhao X H . π-quasinormality of the maximal subgroups of a Sylow subgroup in a local subgroup. Acta Math. Sci. (Chin. Ser.), 2008, 28 (6): 1222- 1226 (in Chinese)

26
Guo Y H , Isaacs I M . Conditions on p-subgroups implying p-nilpotence or p-supersolvability. Arch. Math., 2015, 105: 215- 222

DOI

27
Hall P . On a theorem of Frobenius. Proc. London Math. Soc., 1936, 40: 468- 501

28
Heliel A A , Alharbia S M . The infuence of certain permutable subgroups on the structure of finite groups. Internat. J. Algebra, 2010, 4: 1209- 1218

29
Huang Y J , Li Y M . A local version of a result of Chen. J. Math., 2013, 33 (4): 584- 590

30
Huppert B . Endliche Gruppen I. Grund. Math Wiss Vol 134, Berlin-Heidelberg-New York: Springer-Verlag, 1967 (in German)

31
Huppert B , Blackburn N . Finite Groups III. Berlin: Springer-Verlag, 1982

32
Isaacs I M . Semipermutable π-subgroups. Arch. Math., 2014, 102 (1): 1- 6

DOI

33
Kegel O H . Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205- 221 (in German)

DOI

34
Kurzwell H , Stellmacher B . The Theory of Finite Groups: An Introduction. New York: Springer, 2003

35
Li B J . On Π-property and Π-normality of subgroups of finite groups. J. Algebra, 2011, 334 (1): 321- 337

DOI

36
Li S , He X . On normally embedded subgroups of prime power order in finite groups. Comm. Algebra, 2008, 36: 2333- 2340

DOI

37
Li Y M , He X L , Wang Y M . On s-semipermutable subgroups of finite groups. Acta Math. Sin. (Engl. Ser.), 2010, 26 (11): 2215- 2222

DOI

38
Li Y M , Li B J . On minimal weakly s-supplemented subgroups of finite groups. J. Algebra Appl., 2011, 10: 811- 820

DOI

39
Li Y M , Miao L Y . p-hypercyclically embedding and Π-property of subgroups of finite groups. Comm. Algebra, 2017, 45 (8): 3468- 3474

DOI

40
Li Y M , Qiao S H . On weakly s-normal subgroups of finite groups. Ukrainian Math. J., 2012, 63 (11): 1770- 1780

DOI

41
Li Y M , Qiao S H , Su N , Wang Y M . On weakly s-semipermutable subgroups of finite groups. J. Algebra, 2012, 371: 250- 261

DOI

42
Li Y M , Qiao S H , Wang Y M . A note on a result of Skiba. Sib. Math. J., 2009, 50 (3): 467- 473

DOI

43
Li Y M , Wang Y M . The influence of minimal subgroups on the structure of finite group. Proc. Amer. Math. Soc., 2003, 131 (2): 337- 349

44
Li Y M , Wang Y M , Wei H Q . The influence of π-quasinormality of maximal subgroups of Sylow subgroups of a finite group. Arch. Math. (Basel), 2003, 81 (3): 245- 252

DOI

45
Lu J K , Li S R . On s-semipermutable subgroups of finite groups. J. Math. Res. Exposition, 2009, 29 (6): 985- 991

46
Lukyanenko V O , Skiba A N . On weakly τ-quasinormal subgroups of finite groups. Acta Math. Hungar., 2009, 125 (3): 237- 248

DOI

47
Lukyanenko V O , Skiba A N . Finite groups in which τ-quasinormality is a transitive relation. Rend. Semin. Mat. Univ. Padova, 2010, 124: 231- 246

DOI

48
Maier R , Schmid P . The embedding of quasinormal subgroups in finite groups. Math. Z., 1973, 131 (3): 269- 272

DOI

49
Mao Y M , Mahboob A , Guo W B . S-semiembedded subgroups of finite groups. Front. Math. China, 2015, 10 (6): 1401- 1413

DOI

50
Mazurov V D , Khukhro E I (eds.), Unsolved Problems in Group Theory, 15th Ed.. The Kourovka Notebook, Novosibirsk: Inst. Math. of Russian Acad. Sci. Sib. Div., 2002

51
Miao L Y , Ballester-Bolinches A , Esteban-Romero R , Li Y M . On the supersoluble hypercentre of a finite group. Monatsh. Math., 2017, 184: 641- 648

DOI

52
Miao L Y , Li Y M . Some criteria for p-supersolvability of a finite group. Comm. Math. Stat., 2017, 5 (3): 339- 348

DOI

53
Obaid M . Finite groups whose certain subgroups of prime power order are S-semipermutable. ISRN Algebra, 2011: 339- 348

54
Ore O . Structures of group theory I. Duke Math. J., 1937, 3: 149- 174

55
Qiu Z , Qiao S . s-semipermutability of subgroups of p-nilpotent residual and p-supersolubility of a finite group. J. Algebra Appl., 2021, 20: 2150117

DOI

56
Ramadan M . Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math. Hungar., 1992, 59 (1/2): 107- 110

57
Ren Y C . Notes on π-quasi-normal subgroups in finite groups. Proc. Amer. Math. Soc., 1993, 117: 631- 636

58
Schmid P . Subgroups permutable with all Sylow subgroups. J. Algebra, 1998, 207: 285- 293

DOI

59
Sergienko V I . A criterion for the p-solubility of finite groups. Mat. Zametki, 1971, 9: 375- 383

60
Shemetkov L , Skiba A . On the χφ-hypercenter of finite groups. J. Algebra, 2009, 322: 2106- 2117

DOI

61
Shen Z C , Zhang J S , Wu S L . Finite groups with weakly s-semipermutably embedded subgroups. Intern. Elect. J. Algebra, 2012, 11: 111- 124

62
Skiba A N . On weakly s-permutable subgroups of finite groups. J. Algebra, 2007, 315: 192- 209

DOI

63
Srinivasan S . Two sufficient conditions for supersolvability of finite groups. Israel J. Math., 1980, 35 (3): 210- 214

DOI

64
Stonehewer S E . Permutable subgroups of infinite groups. Math. Z., 1972, 125: 1- 16

DOI

65
Su N , Li Y M , Wang Y M . A criterion of p-hypercyclically embedded subgroups of finite groups. J. Algebra, 2014, 400: 82- 93

DOI

66
Thompson J G . An example of core-free quasinormal subgroups of p-groups. Math. Z., 1967, 96: 226- 226

DOI

67
Wang L F . The influence of s-semipermutable subgroups on the p-supersolvability of finite groups. J. Math. Stud., 2009, 42 (4): 434- 440 (in Chinese)

68
Wang L F , Li Y M , Wang Y M . Finite groups in which (S-)semipermutability is a transitive relation. Intern. J. Algebra, 2008, 2 (3): 143- 152

69
Wang L F , Wang Y M . On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups. Comm. Algebra, 2006, 34 (1): 143- 149

DOI

70
Wang L F , Zhang Q H . Influence of s-semipermutability of some subgroups of prime power order on structure of finite groups. J. Math. Res. Exposition., 2005, 25 (3): 423- 428

71
Wang Y M . C-normality of groups and its properties. J. Algebra, 1996, 180: 954- 965

DOI

72
Wei H Q , Wang Y M , Li Y M . On c-supplemented maximal and minimal subgroups of Sylow subgroups of finite groups. Proc. Amer. Math. Soc., 2004, 132 (8): 2197- 2204

DOI

73
Wei H Q , Dai Q , Zhang H , Lv Y , Yang L . On c#-normal subgroups in finite groups, Front. Math. China, 2018, 13 (5): 1169- 1178

DOI

74
Wei H Q , Yang L , Dong S . Local c*-supplementation of some subgroups in finite groups, Comm. Algebra, 2016, 44 (11): 4986- 4994

DOI

75
Wu X , Li X . Weakly s-semipermutable subgroups and structure of finite groups. Comm. Algebra, 2020, 48 (6): 2307- 2314

DOI

76
Xu X Y , Li Y M . A criterion on the finite p-nilpotent groups. J. Math. Res. Appl., 2019, 39 (3): 254- 258

77
Xu Y , Li X H . Weakly s-semipermutable subgroups of finite groups. Front. Math. China, 2011, 6 (1): 161- 175

DOI

78
Yu H R . A note on S-semipermutable subgroups of finite groups. Rend. Semin. Mat. Univ. Padova, 2017, 138: 257- 263

DOI

79
Zhang Q H . s-semipermutability and abnormality in finite groups. Comm. Algebra, 1999, 27 (9): 4515- 4524

DOI

80
Zhang Q H , Wang L F . Finite non-abelian simple groups which contain a non-trivial semipermutable subgroup. Algebra Colloq., 2005, 12 (2): 301- 307

DOI

81
Zhang Q H , Wang L F . The influence of s-semipermutable subgroups on the structure of finite groups. Acta Math. Sinica (Chin. Ser.), 2005, 48 (1): 81- 88 (in Chinese)

82
Zhang Q H , Wang L F , Guo P F . The structure of some finite groups. Southeast Asian Bull. Math., 2006, 30: 995- 1002

83
Zhao T , Lu G F . The influence of partially s-embedded subgroups on the structure of a finite group. Acta Univ. Apulensis, 2014, 38: 197- 209

Outlines

/