RESEARCH ARTICLE

Classification on irreducible Whittaker modules over quantum group Uqsl3,

  • Limeng XIA 1 ,
  • Xiangqian GUO 2 ,
  • Jiao ZHANG , 3
Expand
  • 1. Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China
  • 2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
  • 3. Department of Mathematics, Shanghai University, Shanghai 200444, China

Received date: 01 Jul 2020

Accepted date: 09 Mar 2021

Copyright

2021 Higher Education Press

Abstract

We define the Whittaker modules over the simply-connected quantum group Uqsl3, ; where is the weight lattice of Lie algebra sl3: Then we completely classify all those simple ones. Explicitly, a simple Whittaker module over Uqsl3, is either a highest weight module, or determined by two parametersz andγ* (up to a Hopf automorphism).

Cite this article

Limeng XIA , Xiangqian GUO , Jiao ZHANG . Classification on irreducible Whittaker modules over quantum group Uqsl3,[J]. Frontiers of Mathematics in China, 2021 , 16(4) : 1089 -1097 . DOI: 10.1007/s11464-021-0932-7

1
Adamović D, Lü R C, Zhao K M. Whittaker modules for the affine Lie algebra A1(1).Adv Math, 2016, 289: 438–479

2
Arnal D, Pinzcon G. On algebraically irreducible representations of the Lie algebras sl2. J Math Phys, 1974, 15: 350–359

3
Benkart G, Ondrus M. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141–164

DOI

4
Christodoulopoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320: 2871–2890

DOI

5
Guo X Q, Liu X W. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39: 3222–3231

DOI

6
Guo X Q, Liu X W. Whittaker modules over Virasoro-like algebra. J Math Phys, 2011, 52(9): 093504 (9 pp)

DOI

7
Hartwig J T, Yu N. Simple Whittaker modules over free bosonic orbifold vertex operator algebras. Proc Amer Math Soc, 2019, 147: 3259–3272

DOI

8
Jantzen J C. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996

9
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48: 101–184

DOI

10
Li L B, Xia L M, Zhang Y H. On the centers of quantum groups of An-type. Sci China Math, 2018, 61: 287–294

DOI

11
Liu D, Pei Y F, Xia L M. Whittaker modules for the super-Virasoro algebras. J Algebra Appl, 2019, 18: 1950211 (13 pp)

DOI

12
Liu X W, Guo X Q. Whittaker modules over loop Virasoro algebra. Front Math China, 2013, 8(2): 393–410

DOI

13
Ondrus M. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192–213

14
Ondrus M, Wiesner E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8: 363-377

DOI

15
Ondrus M, Wiesner E. Whittaker categories for the Virasoro algebra. Comm Algebra, 2013, 41: 3910–3930

DOI

16
Sevostyanov A. Regular nilpotent elements and quantum groups. Comm Math Phys, 1999, 204: 1–16

DOI

17
Sevostyanov A. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105: 211–238

DOI

Outlines

/