RESEARCH ARTICLE

Transversality on locally pseudocompact groups

  • Fucai LIN , 1,2 ,
  • Zhongbao TANG 1
Expand
  • 1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China
  • 2. Fujian Key Laboratory of Granular Computing and Applications, Minnan Normal University, Zhangzhou 363000, China

Received date: 20 Jul 2020

Accepted date: 13 May 2021

Published date: 15 Jun 2021

Copyright

2021 Higher Education Press

Abstract

Two non-discrete Hausdorff group topologies τ and δ on a group G are called transversal if the least upper bound τδ of τ and δ is the discrete topology. In this paper, we discuss the existence of transversal group topologies on locally pseudocompact, locally precompact, or locally compact groups. We prove that each locally pseudocompact, connected topological group satisfies central subgroup paradigm, which gives an affrmative answer to a problem posed by Dikranjan, Tkachenko, and Yaschenko [Topology Appl., 2006, 153:3338-3354]. For a compact normal subgroup K of a locally compact totally disconnected group G, if G admits a transversal group topology, then G/K admits a transversal group topology, which gives a partial answer again to a problem posed by Dikranjan, Tkachenko, and Yaschenko in 2006. Moreover, we characterize some classes of locally compact groups that admit transversal group topologies.

Cite this article

Fucai LIN , Zhongbao TANG . Transversality on locally pseudocompact groups[J]. Frontiers of Mathematics in China, 2021 , 16(3) : 771 -782 . DOI: 10.1007/s11464-021-0940-7

1
Agrawal M R, Kanpur U B. On existence of finite universal Korovkin sets in the centre of group Algebra. Monatsh Math, 1997, 123: 1–20

DOI

2
Arhangel'skii A, Tkachenko M. Topological Groups and Related Structures. Atlantis Stud Math, Vol 1. Paris/Hackensack: Atlantis Press/World Scientific, NJ, 2008

DOI

3
Birkhoff G. On the combination of topologies. Fund Math, 1936, 26: 156–166

DOI

4
Dikranjan D. Recent advances in minimal topological groups. Topology Appl, 1998, 126: 149–168

DOI

5
Dikranjan D, Tkachenko M, Yaschenko I. On transversal group topologies. Topology Appl, 2005, 153: 786–817

DOI

6
Dikranjan D, Tkachenko M, Yaschenko I. Transversal group topologies on non-abelian group. Topology Appl, 2006, 153: 3338–3354

DOI

7
van Douwen E K. The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality. Proc Amer Math Soc, 1980, 80(4): 678–682

DOI

8
Engelking R. General Topology (revised and completed ed). Berlin: Heldermann Verlag, 1989

9
Grosser S, Moskowitz M. On central topological groups. Trans Amer Math Soc, 1967, 127: 317–340

DOI

10
Hofmann K H, Morris S. The Structure of Compact Groups. Berlin: de Gruyter, 2013

DOI

11
Peyrovian M R. Maximal compact normal subgroups. Proc Amer Math Soc, 1987, 99(2): 389–394

DOI

12
Prodanov I R, Stoyanov L N. Every minimal abelian group is precompact. Dokl Bulg Acad Sci, 1984, 37: 23–26

13
Stephenson R M. Minimal topological groups. Math Ann, 1971, 192: 193–195

DOI

14
Tkacenko M G, Tkachuk V V, Wilson R G, Yaschenko I. No submaximal topology on a countable set is T1-complementary. Proc Amer Math Soc, 2000, 128(1): 287–297

DOI

15
Weil A. Sur les Espaces à Structure Uniforme et sur la Topologie Génénrale. Publ Math de l'Université Strasbourg. Paris: Hermann $ Cie, 1937

16
Zelenyuk E, Protasov I. Complemented topologies on abelian groups. Sibirsk Mat Zh, 2001, 42(3): 550-560 (in Russian); Sib Math J, 2001, 42(3): 465–472

DOI

Outlines

/