RESEARCH ARTICLE

Functional inequalities for time-changed symmetric α-stable processes

  • Jian WANG , 1 ,
  • Longteng ZHANG 2
Expand
  • 1. College of Mathematics and Informatics & Fujian Key Laboratory of Mathematical Analysis and Applications (FJKLMAA) & Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University, Fuzhou 350007, China
  • 2. Concord University College & College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China

Received date: 30 Jun 2020

Accepted date: 11 Jan 2021

Published date: 15 Apr 2021

Copyright

2021 Higher Education Press

Abstract

We establish sharp functional inequalities for time-changed symmetric α-stable processes on d with d1 and α(0,2), which yield explicit criteria for the compactness of the associated semigroups. Furthermore, when the time change is defined via the special function W(x)=(1+|x|)β with β>α we obtain optimal Nash-type inequalities, which in turn give us optimal upper bounds for the density function of the associated semigroups.

Cite this article

Jian WANG , Longteng ZHANG . Functional inequalities for time-changed symmetric α-stable processes[J]. Frontiers of Mathematics in China, 2021 , 16(2) : 595 -622 . DOI: 10.1007/s11464-021-0908-7

1
Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Grundlehren Math Wiss, Vol 348. Berlin: Springer, 2014

DOI

2
Carlen E A,Kusuoka S, Stroock D W.Upper bounds for symmetric Markov transition functions. Ann Inst Henri Poincaré Probab Stat, 1987, 23: 245–287

DOI

3
ChenM F.Eigenvalues, Inequalities, and Ergodic Theory.London: Springer-Verlag, 2005

4
Chen X, Wang J.Intrinsic ultracontractivity for general Lévy processes on bounded open sets. Illinois J Math, 2014, 58: 1117–1144

DOI

5
Chen Z Q, Fukushima M. Symmetric Markov Processes, Time Change, and Boundary Theory. London Math Soc Monogr Ser, Vol 35. Princeton: Princeton Univ Press, 2011

DOI

6
Chen Z Q, Kim P, Kumagai T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math Ann, 2008, 342: 833–883

DOI

7
Chen Z Q, Kumagai T. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process Appl, 2003, 108: 27–62

DOI

8
Chen Z Q, Wang J.Ergodicity for time changed symmetric stable processes. Stochastic Process Appl, 2014, 124: 2799–2823

DOI

9
Demengel F,Demengel G.Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. London: Springer-Verlag, 2012

DOI

10
Di Nezza E, PalatucciG,Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573

DOI

11
Hurri-Syrjänen R, Vähäkangas A V. On fractional Poincaré inequalities. J Anal Math, 2013, 120: 85–104

DOI

12
Kumar R, Popovic L. Large deviations for multi-scale jump-diffusion processes. Stochastic Process Appl, 2017, 127: 1297–1320

DOI

13
Metafune G, Spina C. Elliptic operators with unbounded diffusion coefficients in Lp-spaces. Ann Sc Norm Super Pisa Cl Sci (5), 2012, 11(2): 303–340

DOI

14
Nguyen H M, Squassina M. Fractional Caffarelli-Kohn-Nirenberg inequalities. J Funct Anal, 2018, 274: 2661–2672

DOI

15
Spina C. Heat kernel estimates for an operator with unbounded diffusion coefficients in ℝ and ℝ2: Semigroup Forum, 2013, 86: 67–82

DOI

16
Wang F Y. Functional Inequalities, Markov Processes and Spectral Theory. Beijing: Science Press, 2005

17
Wang J. Compactness and density estimates for weighted fractional heat semigroups. J Theoret Probab, 2019, 172: 301–376

Outlines

/