RESEARCH ARTICLE

Atomic decomposition characterizations of weighted multiparameter Hardy spaces

  • Xinfeng WU
Expand
  • 1Department of Mathematics, China University of Mining and Technology (Beijing), Beijing 100083, China

Received date: 28 Oct 2011

Accepted date: 06 Feb 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let wA. In this paper, we introduce weighted-(p, q) atomic Hardy spaces Hwp,q(n×m) for 0p1, qqw and show that the weighted Hardy space Hwp,q(n×m) defined via Littlewood-Paley square functions coincides with Hwp,q(n×m) for 0p1, qqw. As applications, we get a general principle on the Hwp,q(n×m) to Lwp,q(n×m) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.

Cite this article

Xinfeng WU . Atomic decomposition characterizations of weighted multiparameter Hardy spaces[J]. Frontiers of Mathematics in China, 2012 , 7(6) : 1195 -1212 . DOI: 10.1007/s11464-012-0213-6

1
Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283(3): 392-442

DOI

2
Carleson L. A counterexample for measures bounded on Hp for the bidisc. Mittag- Leffler Report, No 7, 1974

3
Chang S-Y A, Fefferman R. A continuous version of dulity of H1 and BMO on the bidisk. Ann Math, 1980, 112(1): 179-201

DOI

4
Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104(3): 455-468

DOI

5
Chang S-Y A, Fefferman R. Some recent developments in Fourier analysis and Hp theory on product domains. Bull Amer Math Soc, 1985, 12(1): 1-43

DOI

6
Coifman R. A real variable characterization of Hp. Studia Math, 1974, 51: 269-274

7
Ding Y, Han Y, Lu G, Wu X. Boundedness of singular integrals on multiparameter weighted Hardy spaces Hpw (Rn × Rm). Potential Anal, 2012, 37: 31-56

DOI

8
Garcia-Cuerva J. Weighted Hardy spaces. Dissertationes Math, 1979, 162: 1-63

9
Garcia-Cuerva J, Rubio de Francia J. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland, 1985

10
Han Y, Lu G, Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20(3): 670-689

DOI

11
Krug D. A weighted version of the atomic decomposition for Hp (bi-half space). Indiana Univ Math J, 1988, 37(2): 277-300

DOI

12
Krug D, Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10(2): 363-378

DOI

13
Latter R H. A decomposition of Hp(Rn) in terms of atoms. Studia Math, 1978, 62: 92-101

14
Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Berlin-New York: Springer- Verlag, 1989

15
Zhao K, Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14(2): 319-327

Options
Outlines

/