RESEARCH ARTICLE

Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten

  • Haiyan GUAN ,
  • Delu TIAN ,
  • Shenglin ZHOU
Expand
  • Department of Mathematics, South China University of Technology, Guangzhou 510640, China

Received date: 06 Dec 2011

Accepted date: 15 Apr 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper is a further contribution to the classification of linetransitive finite linear spaces. We prove that if φ is a non-trivial finite linear space such that the Fang-Li parameter gcd(k, r) is 9 or 10, and the group G≤Aut(φ) is line-transitive and point-imprimitive, then φ is the Desarguesian projective plane PG(2, 9).

Cite this article

Haiyan GUAN , Delu TIAN , Shenglin ZHOU . Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten[J]. Frontiers of Mathematics in China, 2012 , 7(6) : 1095 -1112 . DOI: 10.1007/s11464-012-0214-5

1
Betten A, Delandtsheer A, Law M, Niemeyer A C, Praeger C E, Zhou S L. Linear spaces with a line-transitive point-imprimitive automorphism group and Fang-Li parameter gcd(k, r) at most eight. http://arxiv.org/abs/math.CO/0701629

2
Betten A, Delandtsheer A, Law M, Niemeyer A C, Praeger C E, Zhou S L. Finite line-transitive linear spaces: theory and search strategies. Acta Math Sin (Engl Ser), 2009, 25(9): 1399-1436

3
Block A R. On the orbits of collineation groups. Math Z, 1967, 96: 33-49

4
Cameron P J. Finite permutation groups and finite simple groups. Bull Lond Math Soc, 1981, 13(1): 1-22

5
Camina A R, Mishcke S. Line-transitive automorphism groups of linear spaces. Electron J Comb, 1996, 3(1): Research Paper 3 (electronic)

6
Camina A R, Praeger C E. Line-transitive, point quasiprimitive automorphism groups of finite linear spaces are affine or almost simple. Aequationes Math, 2001, 61(3): 221-232

7
Camina A R, Siemons J. Block transitive automorphism groups of 2-(v, k, 1) block designs. J Combin Theory Ser A, 1989, 51(2): 268-276

8
Coutts H J, Quick M, Roney-Dougal C M. The primitive permutation groups of degree less than 4096. Comm Algebra, 2011, 39(10): 3526-3546

9
Cresp G. Searching for line-transitive, point-imprimitive linear spaces. Honours Dissertation, UWA, Perth, 2001. http://arxiv.org/abs/math.CO/0604532

10
Delandtsheer A. Line-primitive automorphism groups of finite linear spaces. European J Comb, 1989, 10(2): 161-169

11
Delandtsheer A, Doyen J. Most block-transitive t-designs are point-primitive. Geom Dedicata, 1989, 29(3): 307-310

12
Delandtsheer A, Niemeyer A C, Praeger C E. Finite line-transitive linear spaces: parameters and normal point-partitions. Adv Geom, 2003, 3(4): 469-485

13
Dixon J D, Mortimer B. Permutation Groups. Graduate Texts in Mathematics, Vol 163. New York: Springer-Verlag, 1996

14
Fang W D, Li H L. A generalization of the Camina-Gagen theorem. J Math (Wuhan), 1993, 13(4): 437-442 (in Chinese)

15
Guan H Y, Tian D L, Zhou S L. Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most 10. http://arxiv.org/abs/1112.3432v1

16
Kleidman P, Liebeck M. The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Notes Series, Vol 129. Cambridge: Cambridge University Press, 1990

17
Li H L, Liu W J. Line-primitive 2-(ν, k, 1) designs with k/(k, ν)≤10. J Combin Theory Ser A, 2001, 93: 153-167

18
Liebeck M W, Saxl J. Primitive permutation groups containing an element of large prime order. J Lond Math Soc (2), 1985, 31(2): 237-249

19
Praeger C E, Tuan N D. Inequalities involving the Delandtsheer-Doyen parameters for finite line-transitive linear spaces. J Combin Theory Ser A, 2003, 102(1): 38-62

20
Praeger C E, Zhou S L. Classification of line-transitive point-imprimitive linear spaces with line size at most 12. Des Codes Cryptogr, 2008, 47: 99-111

21
Roney-Dougal C M. The primitive permutation groups of degree less than 2500. J Algebra, 2000, 292: 154-183

22
The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4; 2005. http://www.gap-system.org

23
Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964

Options
Outlines

/