Frontiers of Mathematics in China >
Certain categories of modules for twisted affine Lie algebras
Received date: 14 Apr 2011
Accepted date: 20 Feb 2012
Published date: 01 Dec 2012
Copyright
In this paper, using generating functions, we study two categories and of modules for twisted affine Lie algebras [σ], which were firstly introduced and studied for untwisted affine Lie algebras by H. -S. Li [Math Z, 2004, 248: 635-664]. We classify integrable irreducible [σ]-modules in categories and , where is proved to contain the well-known evaluation modules and to unify highest weight modules, evaluation modules and their tensor product modules. We determine also the isomorphism classes of those irreducible modules.
Key words: Twisted affine Lie algebra; module; category
Yongcun GAO , Jiayuan FU . Certain categories of modules for twisted affine Lie algebras[J]. Frontiers of Mathematics in China, 2012 , 7(6) : 1073 -1093 . DOI: 10.1007/s11464-012-0203-8
1 |
Chari V. Integrable representations of affine Lie algebras. Invent Math, 1986, 85: 317-335
|
2 |
Chari V, Pressley A N. New unitary representations of loop groups. Math Ann, 1986, 275: 87-104
|
3 |
Chari V, Pressley A N. A new family of irreducible, integrable modules for affine Lie algebras. Math Ann, 1987, 277: 543-562
|
4 |
Chari V, Pressley A N. Integrable representations of twisted affine Lie algebras. J Algebra, 1988, 113: 438-464
|
5 |
Dong C, Li H-S, Mason G. Regularity of rational vertex operator algebras. Adv Math, 1997, 132: 148- 166
|
6 |
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Appl Math, Vol 134. Boston: Academic Press, 1988
|
7 |
Kac V G. Infinite Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990
|
8 |
Lepowsky J, Li H-S. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227. Boston: Birkhäuser, 2004
|
9 |
Li H-S. On certain categories of modules for affine Lie algebras. Math Z, 2004, 248: 635-664
|
/
〈 | 〉 |