RESEARCH ARTICLE

Certain categories of modules for twisted affine Lie algebras

  • Yongcun GAO ,
  • Jiayuan FU
Expand
  • School of Science, Communication University of China, Beijing 100024, China

Received date: 14 Apr 2011

Accepted date: 20 Feb 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, using generating functions, we study two categories ϵ and ϕ of modules for twisted affine Lie algebras g^[σ], which were firstly introduced and studied for untwisted affine Lie algebras by H. -S. Li [Math Z, 2004, 248: 635-664]. We classify integrable irreducible g^[σ]-modules in categories ϵ and ϕ, where ϵ is proved to contain the well-known evaluation modules and ϕ to unify highest weight modules, evaluation modules and their tensor product modules. We determine also the isomorphism classes of those irreducible modules.

Cite this article

Yongcun GAO , Jiayuan FU . Certain categories of modules for twisted affine Lie algebras[J]. Frontiers of Mathematics in China, 2012 , 7(6) : 1073 -1093 . DOI: 10.1007/s11464-012-0203-8

1
Chari V. Integrable representations of affine Lie algebras. Invent Math, 1986, 85: 317-335

DOI

2
Chari V, Pressley A N. New unitary representations of loop groups. Math Ann, 1986, 275: 87-104

DOI

3
Chari V, Pressley A N. A new family of irreducible, integrable modules for affine Lie algebras. Math Ann, 1987, 277: 543-562

DOI

4
Chari V, Pressley A N. Integrable representations of twisted affine Lie algebras. J Algebra, 1988, 113: 438-464

DOI

5
Dong C, Li H-S, Mason G. Regularity of rational vertex operator algebras. Adv Math, 1997, 132: 148- 166

DOI

6
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Appl Math, Vol 134. Boston: Academic Press, 1988

7
Kac V G. Infinite Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990

DOI

8
Lepowsky J, Li H-S. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227. Boston: Birkhäuser, 2004

DOI

9
Li H-S. On certain categories of modules for affine Lie algebras. Math Z, 2004, 248: 635-664

DOI

Options
Outlines

/