RESEARCH ARTICLE

A smoothing inexact Newton method for P0 nonlinear complementarity problem

  • Haitao CHE , 1,2 ,
  • Yiju WANG 2 ,
  • Meixia LI 1
Expand
  • 1. School of Mathematics and Information Science, Weifang University,Weifang 261061, China
  • 2. School of Management Science, Qufu Normal University, Rizhao 276800, China

Received date: 12 May 2011

Accepted date: 10 Sep 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We first propose a new class of smoothing functions for the nonlinear complementarity function which contains the well-known Chen-Harker- Kanzow-Smale smoothing function and Huang-Han-Chen smoothing function as special cases, and then present a smoothing inexact Newton algorithm for the P0 nonlinear complementarity problem. The global convergence and local superlinear convergence are established. Preliminary numerical results indicate the feasibility and efficiency of the algorithm.

Cite this article

Haitao CHE , Yiju WANG , Meixia LI . A smoothing inexact Newton method for P0 nonlinear complementarity problem[J]. Frontiers of Mathematics in China, 2012 , 7(6) : 1043 -1058 . DOI: 10.1007/s11464-012-0245-y

1
Chen B, Harker P T. A non-interior-point continuation method for linear complementarity problems. SIAM J Matrix Anal Appl, 1993, 14(4): 1168-1190

DOI

2
Chen B, Ma C. A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P0 function. J Global Optim, 2011, 51(3): 473-495

DOI

3
Chen X, Qi L, Sun D. Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math Comput, 1998, 67(222): 519-540

DOI

4
Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983

5
Ferris M C, Pang J S. Engineering and economic applications of complementarity problems. SIAM Review, 1997, 39(4): 669-713

DOI

6
Geiger C, Kanzow C. On the resolution of monotone complementarity problems. Comput Optim Appl, 1996, 5: 155-173

DOI

7
Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math Program, 1990, 48(2): 161-220

DOI

8
Hotta K, Yoshise A. Global convergence of a class of non-interior point algorithms using Chen-Harker-Kanzow-Smale functions for nonlinear complementarity problems. Math Program, 1999, 86: 105-133

DOI

9
Huang Z, Han J, Chen Z. Predictor-Corrector Smoothing Newton Method, Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P0 Function. J Optim Theory Appl, 2003, 117(1): 39-68

DOI

10
Kanzow C. Some noninterior continuation methods for linear complementarity problems. SIAM J Matrix Anal Appl, 1996, 17(4): 851-868

DOI

11
Kanzow C, Kleinmichel H. A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput Optim Appl, 1998, 11: 227-251

DOI

12
Luca T D, Facchinei F, Kanzow C. A semismooth equation approach to the solution of nonlinear complementarity problems. Math Program, 1996, 75(3): 407-439

DOI

13
Ma C, Chen X. The convergence of a one-step smoothing Newton method for P0-NCP base on a new smoothing NCP-function. J Comput Appl Math, 2008, 216(1): 1-13

DOI

14
Mathiesen L. An algorithm based on a sequence of a linear complementarity problems applied to a Walrasian equilibrium model: an example. Math Program, 1987, 37(1): 1-18

DOI

15
Mifflin R. Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim, 1977, 15(6): 957-972

DOI

16
Natasa K, Sanja R. Globally convergent Jacobian smoothing inexact Newton methods for NCP. Comput Optim Appl, 2008, 41(2): 243-261

DOI

17
Pang J S, Gabriel A. NE/SQP: a robust algorithm for nonlinear complementarity problems. Math Program, 1993, 60: 295-337

DOI

18
Qi L. Convergence analysis of some algorithms for solving nonsmooth equations. Math Oper Res, 1993, 18(1): 227-244

DOI

19
Qi L, Sun D, Zhou G. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math Program, 2000, 87(1): 1-35

20
Qi L, Sun J. A nonsmooth version of Newton’s method. Math Programming, 1993, 58(3): 353-367

DOI

21
Sun D, Qi L. On NCP functions. Comput Optim Appl, 1999, 13: 201-220

DOI

22
Xie D, Ni Q. An incomplete Hessian Newton minimization method and its application in a chemical database problem. Comput Optim Appl, 2009, 44(3): 467-485

DOI

23
Zhang X, Jiang H, Wang Y. A smoothing Newton method for generalized nonlinear complementarity problem over a polyhedral cone. J Comput Appl Math, 2008, 212: 75-85

DOI

24
Zhang J, Zhang K. A variant smoothing Newton method for P0-NCP based on a new smoothing function. J Comput Appl Math, 2009, 225(1): 1-8

DOI

Options
Outlines

/