Frontiers of Mathematics in China >
(*)-Serial coalgebras
Received date: 26 Jul 2011
Accepted date: 11 Sep 2011
Published date: 01 Oct 2012
Copyright
In this paper, we introduce the notion of (*)-serial coalgebras which is a generalization of serial coalgebras. We investigate the properties of (*)-serial coalgebras and their comodules, and obtain sufficient and necessary conditions for a basic coalgebra to be (*)-serial.
Key words: Coalgebra; biserial comodule; (*)-serial coalgebra; quiver
Hailou YAO , Weili FAN , Yanru PING . (*)-Serial coalgebras[J]. Frontiers of Mathematics in China, 2012 , 7(5) : 955 -970 . DOI: 10.1007/s11464-012-0182-9
1 |
Assem I, Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras, Vol 1. Cambridge: Cambridge University Press, 2006
|
2 |
Auslander M, Reiten I, Smalϕ S O. Representation Theory of Associative Algebras. Cambridge Studies in Advanced Mathematics, 36. Cambridge: Cambridge University Press, 1995
|
3 |
Chen S W, Huang H, Zhang P. Dual Gabriel theorem with applications. Sci China, Ser A, 2006, 49: 9-26
|
4 |
Chin W. Special biserial coalgebras and representations of quantum SL(2). arXiv: math/0609370V2 [math, QA], 23 Mar 2011
|
5 |
Chin W, Montgomery S. Basic coalgebra.. In: Modular Interfaces (Riverside, CA, 1995) AMS/IP Stud Adv Math, Vol 4. Providence: Amer Math Soc, 1997, 41-47
|
6 |
Cuadra J, Gómez-Torrecillas J. Idempotents and Morita-Takeuchi Theory. Comm Algebra, 2002, 30: 2405-2426
|
7 |
Cuadra J, Gómez-Torrecillas J. Serial coalgebras. J Pure Appl Algebra, 2004, 189: 89-107
|
8 |
Doi Y. Homological coalgebra. J Math Soc Japan, 1981, 33(1): 31-50
|
9 |
Drozd Y A, Kirichenko V V. Finite Dimensional Algebras. Berlin: Springer, 1994
|
10 |
Gómez-Torrecillas J, Nisăstăsescu C. Quasi-Frobenius coalgebras. J Algebra, 1995, 174: 909-923
|
11 |
Gómez-Torrecillas J, Navarro G. Serial coalgebras and valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059
|
12 |
Green J A. Locally finite representations. J Algebra, 1976, 41: 137-171
|
13 |
Kosakowska J, Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505
|
14 |
Lin B I-Peng. Semiperfect coalgebras. J Algebra, 1977, 49: 357-373
|
15 |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS, 82. Providence: Amer Math Soc, 1993
|
16 |
Montgomery S. Indecomposable coalgebras, simple comodules and pointed Hopf algebras. Proc Amer Math Soc, 1995, 123: 2343-2351
|
17 |
Năstăsescu C, Torrecillas B, Zhang Y H. Hereditary coalgebras. Comm Algebra, 1996, 24(4): 1521-1528
|
18 |
Nowak S, Simson D. Locally Dynkin quivers and hereditary coalgebras whose left C-comodules are direct sum of finite dimensional comodules. Comm Algebra, 2002, 30(1): 455-476
|
19 |
Simson D. Coalgebras, comodules, pseudocompact algebras and tame comodule type. Colloq Math, 2001, 90: 101-150
|
20 |
Simson D. Coalgebras of tame comodule type. In: Happel D, Zhang Y B, eds. Representations of Algebras, Proceedings ICRA-9, II. Beijing: Beijing Normal Univ Press, 2002, 450-486
|
21 |
Simson D. Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras. Lecture Notes in Pure and Applied Mathematics, 2005, 236: 465-492
|
22 |
Simson D. Irreducible morphisms, the Gabriel-valued quiver and colocalizations for coalgebras. Int J Math Sci, 2006, 72: 1-6
|
23 |
Simson D. Localizing embeddings of comodule categories with applications to tame and Euler coalgebras. J Algebra, 2007, 312: 455-494
|
24 |
Simson D. Coalgebras of tame comodule type, comodule categories and tame-wild dichotomy problem. In: Skowroński A, Yamata K, eds. Proc ICRA-XIV, Tokyo Aug 2010. Series of Congress Reports. Zürich: European Math Soc Publishing House, 2011
|
25 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
26 |
Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794
|
27 |
Yao Hailou, Fan Weili. Finite dimensional (*)-Serial algebras. Sci China, Ser A, 2010, 53(12): 3049-3056
|
/
〈 | 〉 |