RESEARCH ARTICLE

Reducible solution to a quaternion tensor equation

  • Mengyan XIE ,
  • Qing-Wen WANG
Expand
  • Department of Mathematics, Shanghai University, Shanghai 200444, China

Received date: 27 Jul 2020

Accepted date: 23 Sep 2020

Published date: 15 Oct 2020

Copyright

2020 Higher Education Press

Abstract

We establish necessary and sufficient conditions for the existence of the reducible solution to the quaternion tensor equation A*NX*NB=Cvia Einstein product using Moore-Penrose inverse, and present an expression of the reducible solution to the equation when it is solvable. Moreover, to have a general solution, we give the solvability conditions for the quaternion tensor equation A1*NX1*MB1+A1*NX2*MB2+A2*NX3*MB2=C, which plays a key role in investigating the reducible solution to A*NX*NB=C. The expression of such a solution is also presented when the consistency conditions are met. In addition, we show a numerical example to illustrate this result.

Cite this article

Mengyan XIE , Qing-Wen WANG . Reducible solution to a quaternion tensor equation[J]. Frontiers of Mathematics in China, 2020 , 15(5) : 1047 -1070 . DOI: 10.1007/s11464-020-0865-6

1
Artzouni M, Gouteux J P. A parity-structured matrix model for tsetse populations. Math Biosci, 2006, 204(2): 215–231

DOI

2
Bader B W, Kolda T G. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans Math Software, 2006, 32(4): 635–653

DOI

3
Behera R, Mishra D. Further results on generalized inverses of tensors via the Einstein product, Linear Multilinear Algebra, 2017, 65(8): 1662–1682

DOI

4
Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. New York: McGraw-Hill, 1974

5
Bihan N L, Mars J. Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Process, 2004, 84(7): 1177–1199

DOI

6
Bouldin R. The pseudo-inverse of a product. SIAM J Appl Math, 1973, 24(4): 489–495

DOI

7
Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl, 2013, 34(2): 542–570

DOI

8
Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6(2): 507–520

DOI

9
Chen Z, Lu L Z. A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci China Math, 2012, 55(6): 1281–1292

DOI

10
Cvetković-Ilića D, Wang Q W, Xu Q X. Douglas’ + Sebestyén’s lemmas= a tool for solving an operator equation problem. J Math Anal Appl, 2019, 482(2): 123599

DOI

11
Ding W, Qi L, Wei Y. Fast Hankel tensor-vector product and its application to exponential data fitting. Numer Linear Algebra Appl, 2015, 22(5): 814–832

DOI

12
Ding W, Qi L, Wei Y. Inheritance properties and sum-of-squares decomposition of Hankel tensors: theory and algorithms. BIT, 2017, 57(1): 169–190

DOI

13
Einstein A. The foundation of the general theory of relativity. Ann Phys, 1916, 49(7): 769–822

DOI

14
Guan Y, Chu D L. Numerical computation for orthogonal low-rank approximation of tensors. SIAM J Matrix Anal Appl, 2019, 40(3): 1047–1065

DOI

15
Guan Y, Chu M T, Chu D L. Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl, 2018, 555: 53–69

DOI

16
Guan Y, Chu M T, Chu D L. SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J Matrix Anal Appl, 2018, 39(3): 1095–1115

DOI

17
Hamilton W R. Elements of Quaternions. Cambridge: Cambridge Univ Press, 1866

18
He Z H. The general solution to a system of coupled Sylvester-type quaternion tensor equations involving ŋ-Hermicity. Bull Iranian Math Soc, 2019, 45: 1407–1430

DOI

19
He Z H, Navasca C, Wang Q W. Tensor decompositions and tensor equations over quaternion algebra. arXiv: 1710.07552

20
He Z H, Wang Q W. The ŋ-bihermitian solution to a system of real quaternion matrix equations. Linear Multilinear Algebra, 2014, 62(11): 1509–1528

DOI

21
Huang G X, Yin F, Guo K. An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB = C. J Comput Appl Math, 2008, 212(2): 231–244

22
Kirkland S J, Neumann M, Xu J H. Transition matrices for well-conditioned Markov chains. Linear Algebra Appl, 2007, 424(1): 118–131

DOI

23
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev, 2009, 51(3): 455–500

DOI

24
Lai W M, Rubin D H, Krempl E. Introduction to continuum mechanics. Burlington: Butterworth-Heinemann/Elsevier, 2009

DOI

25
Lei J Z, Wang C Y. On the reducibility of compartmental matrices. Comput Biol Med, 2008, 38(8): 881–885

DOI

26
Leo S D, Scolarici G. Right eigenvalue equation in quaternionic quantum mechanics. J Phys A, 2000, 33(15): 2971–2995

DOI

27
Li L, Zheng B D. Sensitivity analysis of the Lyapunov tensor equation. Linear Multilinear Algebra, 2019, 67(3): 555–572

DOI

28
Li L, Zheng B D, Tian Y B. Algebraic Lyapunov and Stein stability results for tensors. Linear Multilinear Algebra, 2018, 66(4): 731–741

DOI

29
Li T, Wang Q W, Duan X F. Numerical algorithms for solving discrete Lyapunov tensor equation. J Comput Appl Math, 2019, 370: 112676

DOI

30
Li T, Wang Q W, Zhang X F. Hermitian and skew-Hermitian splitting methods for solving a tensor equation. Int J Comput Math, https://doi.org/10.1080/00207160.2020.1815717

DOI

31
Liang M L, Zheng B, Zhao R J. Tensor inversion and its application to tensor equation with Einstein product. Linear Multilinear Algebra, 2019, 67(4): 843–870

DOI

32
Liao A P, Bai Z Z. Least-squares solution of AXB = D over symmetric positive semi-definite matrices X. J Comput Math, 2003 21: 175–182

33
Liao A P, Bai Z Z, Lei Y. Best approximate solution of matrix equation AXB+CY D =E. SIAM J Matrix Anal Appl, 2005, 27(3): 675–688

DOI

34
Nie X R, Wang Q W, Zhang Y. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq, 2017, 24(2): 233–253

DOI

35
Pei S C, Chang J H, Ding J J. Quaternion matrix singular value decomposition and its applications for color image processing. In: International Conference on Image Processing IEEE Xplore 2003 (Cat No 03CH37429). Barcelona, Spain, 2003, I-805

36
Peng Z Y. The centro-symmetric solutions of linear matrix equation AXB = C and its optimal approximation. Chinese J Engrg Math, 2003, 20(6): 60–64

37
Qi L. Eigenvalues of a real supersymmetric tensors. J Symbolic Comput, 2005, 40: 1302–1324

DOI

38
Qi L, Chen H, Chen Y. Tensor eigenvalues and their applications. Adv Mech Math, 2018

DOI

39
Qi L, Luo Z Y. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017

DOI

40
Rehman A. Wang Q W, He Z H. Solution to a system of real quaternion matrix equations encompassing-Hermicity. Appl Math Comput, 2015, 265: 945–957

DOI

41
Rodman L. Topics in Quaternion Linear Algebra. Princeton: Princeton Univ Press, 2014

DOI

42
Santesso P, Valcher M E. On the zero pattern properties and asymptotic behavior of continuous-time positive system trajectories. Linear Algebra Appl, 2007, 425: 283–302

DOI

43
Shao J Y. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366

DOI

44
Shao J Y, You L H. On some properties of three different types of triangular blocked tensors. Linear Algebra Appl, 2016, 511: 110–140

DOI

45
Shi X H, Wei Y M, Ling S Y. Backward error and perturbation bounds for high order Sylvester tensor equation. Linear Multilinear Algebra, 2013, 61(10): 1436–1446

DOI

46
Sun L Z, Zheng B D, Bu C J, Wei Y M. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686–698

DOI

47
Took C C, Mandic D P. Quaternion-valued stochastic gradient-based adaptive IIR filtering. IEEE Trans Signal Process, 2010, 58(7): 3895–3901

DOI

48
Took C C, Mandic D P. Augmented second-order statistics of quaternion random signals. Signal Process, 2011, 91(2): 214–224

DOI

49
Wang Q W. The general solution to a system of real quaternion matrix equations. Comput Math Appl, 2005, 49(5): 665–675

DOI

50
Wang Q W, Chang H X, Lin C Y. P-(skew)symmetric common solutions to a pair of quaternion matrix equations. Appl Math Comput, 2008, 195(2): 721–732

DOI

51
Wang Q W, Lv R Y, Zhang Y. The least-squares solution with the least norm to a system of tensor equations over the quaternion algebra. Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2020.1779172

DOI

52
Wang Q W, Wang X X. Arnoldi method for large quaternion right eigenvalue problem. J Sci Comput, 2020, 82(3)

DOI

53
Wei M S, Li Y, Zhang F X, Zhao J L. Quaternion Matrix Computations. New York: Nova Science Publishers, Inc, 2018

54
Wei Y M, Ding W Y. Theory and Computation of Tensors: Multi-Dimensional Arrays. London: Elsevier/Academic Press, 2016

55
Yuan S F, Wang Q W, Duan X F. On solutions of the quaternion matrix equation AX = B and their applications in color image restoration. Appl Math Comput, 2013, 221: 10–20

56
Zhang F Z. Quaternions and matrices of quaternions. Linear Algebra Appl, 1997, 251: 21{57

DOI

57
Zhang X F, Wang Q W, Li T. The accelerated overrelaxation splitting method for solving symmetric tensor equations. Comput Appl Math, 2020, 39(3): 1–14

DOI

Outlines

/