Frontiers of Mathematics in China >
On B6- and B7-groups
Received date: 09 Mar 2020
Accepted date: 10 May 2020
Published date: 15 Jun 2020
Copyright
A finite group G is said to be a Bn-group if any n-element subset A = {a1, a2,..., an} of G satisfies . In this paper, the characterizations of the B6- and B7-groups are given.
Tianyi ZHONG , Yilan TAN . On B6- and B7-groups[J]. Frontiers of Mathematics in China, 2020 , 15(3) : 613 -616 . DOI: 10.1007/s11464-020-0841-1
1 |
Berkovich Y G, Freiman G A, Praeger C E. Small squaring and cubing properties for finite groups. Bull Aust Math Soc, 1991, 44: 429–450
|
2 |
Brailovsky L. A characterization of abelian groups. Proc Amer Math Soc, 1993, 117(3): 627–629
|
3 |
Eddy T, Parmenter M M. Groups with restricted squaring properties. Ars Combin, 2012, 104: 321–331
|
4 |
Freiman G A. On two- and three-element subsets of groups. Aequationes Math, 1981, 22: 140–152
|
5 |
Huang H, Li Y. On B(4,14) non-2-groups. J Algebra Appl, 2015, 14(8): 1550118 (14pp)
|
6 |
Huang H, Li Y. On B(5,18) groups. Comm Algebra, 2016, 44(2): 568–590
|
7 |
Li Y, Pan X. On B(5,k)-groups. Bull Aust Math Soc, 2011, 84: 393–407
|
8 |
Li Y, Tan Y. On B(4,k) groups. J Algebra Appl, 2010, 9: 27–42
|
9 |
Li Y, Tan Y. On B(4,13) 2-groups. Comm Algebra, 2011, 39: 3769–3780
|
10 |
Li Y, Tan Y. On B5-groups. Ars Combin, 2014, 114: 3–14
|
11 |
Longobardi P, Maj M. The classification of groups with the small squaring property on 3-sets. Bull Aust Math Soc, 1992, 46: 263–269
|
12 |
Parmenter M M. On groups with redundancy in multiplication, Ars Combin, 2002, 63: 119–127
|
13 |
Tan Y, Zhong T. On B(5,19) non-2-groups. Comm Algebra, 2020, 48: 663–667
|
14 |
The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.10.0. 2018
|
15 |
Wang H, Tan Y, Moss T. On B(n,k) 2-groups. Comm Algebra, 2015, 43: 4655–4659
|
/
〈 | 〉 |