Frontiers of Mathematics in China >
Finite dimensional modules over quantum toroidal algebras
Received date: 17 Jan 2020
Accepted date: 17 Jun 2020
Published date: 15 Jun 2020
Copyright
For all generic , when g is not of type A1; we prove that the quantum toroidal algebra Uq(gtor) has no nontrivial finite dimensional simple module.
Key words: Quantum toroidal algebra; finite dimensional module
Limeng XIA . Finite dimensional modules over quantum toroidal algebras[J]. Frontiers of Mathematics in China, 2020 , 15(3) : 593 -600 . DOI: 10.1007/s11464-020-0846-9
1 |
Beck J. Convex bases of PBW type for quantum affine algebras. Comm Math Phys, 1994, 165: 193–199
|
2 |
Block R E. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 39: 69–110
|
3 |
Chari V, Pressley A. Quantum affine algebras. Comm Math Phys, 1991, 142: 261–283
|
4 |
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The nonsimply-laced case. Lett Math Phys, 1995, 35: 99–114
|
5 |
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The simply-laced case. J Algebra, 1996, 184: 1–30
|
6 |
Drinfeld V. A new realization of Yangians and quantized affine algebras. Soviet Math Dokl, 1988, 36: 212–216
|
7 |
Frenkel I, Jing N, Wang W. Quantum vertex representations via finite groups and the McKay correspondence . Comm Math Phys,2000, 211: 365–393
|
8 |
Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147–160
|
9 |
Hernandez D. Quantum toroidal algebras and their representations. Selecta Math (N S), 2009, 14: 701–725
|
10 |
Jantzen J C. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
|
11 |
Miki K. Toroidal and level 0 U0 q(b sln+1) actions on Uq(b gln+1)-modules. J Math Phys, 1999, 40: 3191–3210
|
12 |
Miki K. Representations of quantum toroidal algebra Uq(sln+1,tor)(n>2). J Math Phys, 2000, 41: 7079–7098
|
13 |
Miki K. Quantum toroidal algebra Uq(sl2,tor) and R matrices. J Math Phys, 2001, 42: 2293–2308
|
14 |
Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155–177
|
15 |
Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469–484
|
/
〈 | 〉 |