RESEARCH ARTICLE

Finite dimensional modules over quantum toroidal algebras

  • Limeng XIA
Expand
  • Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China

Received date: 17 Jan 2020

Accepted date: 17 Jun 2020

Published date: 15 Jun 2020

Copyright

2020 Higher Education Press

Abstract

For all generic qC*, when g is not of type A1; we prove that the quantum toroidal algebra Uq(gtor) has no nontrivial finite dimensional simple module.

Cite this article

Limeng XIA . Finite dimensional modules over quantum toroidal algebras[J]. Frontiers of Mathematics in China, 2020 , 15(3) : 593 -600 . DOI: 10.1007/s11464-020-0846-9

1
Beck J. Convex bases of PBW type for quantum affine algebras. Comm Math Phys, 1994, 165: 193–199

DOI

2
Block R E. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 39: 69–110

DOI

3
Chari V, Pressley A. Quantum affine algebras. Comm Math Phys, 1991, 142: 261–283

DOI

4
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The nonsimply-laced case. Lett Math Phys, 1995, 35: 99–114

DOI

5
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The simply-laced case. J Algebra, 1996, 184: 1–30

DOI

6
Drinfeld V. A new realization of Yangians and quantized affine algebras. Soviet Math Dokl, 1988, 36: 212–216

7
Frenkel I, Jing N, Wang W. Quantum vertex representations via finite groups and the McKay correspondence . Comm Math Phys,2000, 211: 365–393

DOI

8
Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147–160

DOI

9
Hernandez D. Quantum toroidal algebras and their representations. Selecta Math (N S), 2009, 14: 701–725

DOI

10
Jantzen J C. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996

11
Miki K. Toroidal and level 0 U0 q(b sln+1) actions on Uq(b gln+1)-modules. J Math Phys, 1999, 40: 3191–3210

DOI

12
Miki K. Representations of quantum toroidal algebra Uq(sln+1,tor)(n>2). J Math Phys, 2000, 41: 7079–7098

DOI

13
Miki K. Quantum toroidal algebra Uq(sl2,tor) and R matrices. J Math Phys, 2001, 42: 2293–2308

DOI

14
Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155–177

DOI

15
Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469–484

DOI

Outlines

/