RESEARCH ARTICLE

Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces

  • Xingsong ZHANG 1 ,
  • Mingquan WEI , 2 ,
  • Dunyan YAN 1 ,
  • Qianjun HE 3
Expand
  • 1. School of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 2. School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
  • 3. School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China

Received date: 10 Oct 2019

Accepted date: 24 Dec 2019

Published date: 15 Feb 2020

Copyright

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We will prove that for 1<p< and 0<λ<n, the central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mγc equals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+. When p = 1 and 0<λ<n, it turns out that the weak central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mγc equals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+. Moreover, the same results are true for the truncated uncentered Hardy-Littlewood maximal operator. Our work extends the previous results of Lebesgue spaces to Morrey spaces.

Cite this article

Xingsong ZHANG , Mingquan WEI , Dunyan YAN , Qianjun HE . Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 215 -223 . DOI: 10.1007/s11464-020-0812-6

1
Alvarez J, Lakey J, Guzmán-Partida M. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 50(1): 1–47

2
Chiarenza F, Frasca M. Morrey spaces and Hardy-Littlewood maximal function. Rend Mat Appl (7), 1987, 7(3-4): 273–279

3
Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123(6): 1687–1693

DOI

4
Duoandikoetxea J. Fourier Analysis. Grad Stud Math, Vol 29. Providence: Amer Math Soc, 2001

5
Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014

DOI

6
Lu S Z, Yan D Y. Lp-boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel. Sci China Ser A, 2002, 45(2): 196–213

7
Morrey C B Jr. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43(1): 126–166

DOI

8
Peetre J. On the theory of Lp,λ spaces. J Funct Anal, 1969, 4: 71–87

DOI

9
Shi Z S H, Yan D Y. Criterion on Lp1×Lp2→Lq-boundedness for oscillatory bilinear Hilbert transform. Abstr Appl Anal, 2014, Art. ID 712051 (11 pp)

DOI

10
Tang L. Endpoint estimates for multilinear fractional integrals. J Aust Math Soc, 2008, 84(3): 419–429

DOI

11
Wei M Q, Nie X D, Wu D, Yan D Y. A note on Hardy-Littlewood maximal operators. J Inequal Appl, 2016, Paper No 21 (13 pp)

DOI

Outlines

/