RESEARCH ARTICLE

Weighted estimates for bilinear square functions with non-smooth kernels and commutators

  • Rui BU 1 ,
  • Zunwei FU , 2,3 ,
  • Yandan ZHANG 1
Expand
  • 1. Department of Mathematics, Qingdao University of Science and Technology, Qingdao 266061, China
  • 2. School of Mathematics and Statistics, Linyi University, Linyi 276005, China
  • 3. School of Mathematical Sciences, Qufu Normal University, Qufu 273100, China

Received date: 02 Nov 2019

Accepted date: 31 Jan 2020

Published date: 15 Feb 2020

Copyright

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Under weaker conditions on the kernel functions, we discuss the boundedness of bilinear square functions associated with non-smooth kernels on the product of weighted Lebesgue spaces. Moreover, we investigate the weighted boundedness of the commutators of bilinear square functions (with symbols which are BMO functions and their weighted version, respectively) on the product of Lebesgue spaces. As an application, we deduce the corresponding boundedness of bilinear Marcinkiewicz integrals and bilinear Littlewood-Paley g-functions.

Cite this article

Rui BU , Zunwei FU , Yandan ZHANG . Weighted estimates for bilinear square functions with non-smooth kernels and commutators[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 1 -20 . DOI: 10.1007/s11464-020-0822-4

1
Bu R, Chen J C. Compactness for the commutator of multilinear singular integral operators with non-smooth kernels. Appl Math J Chinese Univ Ser B, 2019, 34: 55–75

DOI

2
Chuong N M, Hong N T, Hung H D. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces. Front Math China, 2018, 13: 1–24

DOI

3
Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315–331

DOI

4
Coifman R R, Meyer Y. Au delà des opérateurs pseudo-différentiels. Astérisque, No 57. Paris: Soc Math France, 1978

5
Dong B H, Fu Z W, Xu J S. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations. Sci China Math, 2018, 61: 1807–1824

DOI

6
Duong X T, Gong R M, Grafakos L, Li J, Yan L X. Maximal operator for multilinear singular integrals with non-smooth kernels. Indiana Univ Math J, 2009, 58: 2517–2542

DOI

7
Fabes E B, Jerison D, Kenig C. Multilinear square functions and partial differential equations. Amer J Math, 1985, 107: 1325–1368

DOI

8
Garcia-Cuerva J. Weighted Hp Spaces. Dissertationes Math (Rozprawy Mat), 162. Warsaw: Polish Acad Sci Inst Math, 1979

9
Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124–164

DOI

10
Grafakos L, Torres R H. Maximal operator and weighted norm inequalities for multi- linear singular integrals. Indiana Univ Math J, 2002, 51: 1261–1276

DOI

11
Hormozi M, Si Z Y, Xue Q Y. On general multilinear square function with non-smooth kernels. Bull Math Sci, 2018, 149: 1–22

DOI

12
Hou X M, Wu H X. Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting. Front Math China, 2019, 14: 535–550

DOI

13
Hu G E. Weighted compact commutator of bilinear Fourier multiplier operator. Chin Ann Math Ser B, 2017, 38: 795–814

DOI

14
Hu G E, Zhu Y. Weighted norm inequality with general weights for the commutator of Calderón. Acta Math Sin (Engl Ser), 2013, 29: 505–514

DOI

15
Lerner A K. Weighted norm inequalities for the local sharp maximal function. J Fourier Anal Appl, 2004, 10: 645–674

DOI

16
Lerner A K, Ombrosi S, Pérez C, Torres R H, Trujillo-González R. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv Math, 2009, 220: 1222–1264

DOI

17
Liu F, Xue Q Y. Characterizations of the multiple Littlewood-Paley operators on product domains. Publ Math Debrecen, 2018, 92: 419–439

DOI

18
Mo H X, Wang X J, Ma R Q. Commutator of Riesz potential in p-adic generalized Morrey spaces. Front Math China, 2018, 13: 633–645

DOI

19
Pérez C, Pradolini G, Torres R H, Trujillo-González R. End-points estimates for iterated commutators of multilinear singular integrals. Bull Lond Math Soc, 2014, 46: 26–42

DOI

20
Rao M M, Ren Z D. Theory of Orlicz Space. New York: Marcel Dekker, 1991

21
Sato S, Yabuta K. Multilinearized Littlewood-Paley operators. Sci Math Jpn, 2002, 55: 447–453

22
Strömberg J O. Bounded mean oscillation with Orlicz norm and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511–544

DOI

23
Xue Q Y, Yan J Q. On multilinear square function and its applications to multilinear Littlewood-Paley operators with non-convolution type kernels. J Math Anal Appl, 2015, 422: 1342–1362

DOI

Outlines

/