RESEARCH ARTICLE

Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces

  • Feng LIU 1 ,
  • Zunwei FU , 2,3 ,
  • Seong Tae JHANG 4
Expand
  • 1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
  • 2. Department of Mathematics, Linyi University, Linyi 276005, China
  • 3. School of Mathematical Sciences, Qufu Normal University, Qufu 273100, China
  • 4. Department of Computer Science, The University of Suwon, Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, Korea

Received date: 20 Oct 2018

Accepted date: 14 Dec 2018

Published date: 22 Mar 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We establish the boundedness and continuity of parametric Marcinkiewicz integrals associated to homogeneous compound mappings on Triebel-Lizorkin spaces and Besov spaces. Here the integral kernels are provided with some rather weak size conditions on the unit sphere and in the radial direction. Some known results are naturally improved and extended to the rough case.

Cite this article

Feng LIU , Zunwei FU , Seong Tae JHANG . Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces[J]. Frontiers of Mathematics in China, 2019 , 14(1) : 95 -122 . DOI: 10.1007/s11464-019-0742-3

1
Al-Salman A, Al-Qassem H, Cheng L C, Pan Y. Lp bounds for the function of Marcinkiewicz. Math Res Lett, 2002, 9: 697–700

2
Al-Salman A, Pan Y.Singular integrals with rough kernels in Llog+ L(Sn−1): J Lond Math Soc, 2002, 66(1): 153–174

3
Cheng L C.Singular integrals related to homogeneous mappings. Michigan Math J, 2000, 47(2): 407–416

4
Coifman R,Weiss G. Extension of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645

5
Colzani L. Hardy Spaces on Spheres. Ph D Thesis. Washington Univ, St Louis, 1982

6
Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernel. Acta Math Sin (Engl Ser), 2000, 16(4): 593–600

7
Ding Y, Fan D, Pan Y. On the Lp boundedness of Marcinkiewicz integrals. Michigan Math J, 2002, 50: 17–26

8
Ding Y, Xue Q, Yabuta K. Boundedness of the Marcinkiewicz integrals with rough kernel associated to surfaces. Tohoku Math J, 2010, 62(2): 233–262

9
Fan D, Guo K, Pan Y. Lp estimates for singular integrals associated to homogeneous surfaces. J Reine Angew Math, 2002, 542: 1–22

10
Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119(4): 799–839

11
Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser Math, No 79. Providence: Amer Math Soc, 1991

DOI

12
Grafakos L. Classical and Modern Fourier Analysis. Upper Saddle River: Prentice Hall, 2003

13
Liu F.Integral operators of Marcinkiewicz type on Triebel-Lizorkin spaces. Math Nachr, 2017, 290(1): 75–96

14
Liu F. On the Triebel-Lizorkin space boundedness of Marcinkiewicz integrals along compound surfaces. Math Inequal Appl, 2017, 20(2): 515–535

15
Liu F. A note on Marcinkiewicz integrals associated to surfaces of revolution. J Aust Math Soc, 2018, 104: 380–402

16
Liu F, Wu H. Lp bounds for Marcinkiewicz integrals associated to homogeneous mappings. Monatsh Math, 2016, 181(4): 875–906

17
Liu F, Wu H. On the regularity of maximal operators supported by submanifolds. J Math Anal Appl, 2017, 453: 144–158

18
Stein E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 1958, 88(2): 430–466

19
Triebel H. Theory of Function Spaces. Monogr Math, Vol 78. Basel: Birkhäser, 1983

DOI

20
Walsh T. On the function of Marcinkiewicz. Studia Math, 1972, 44: 203–217

21
Wu Q, Fu Z. Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group. Banach J Math Anal, 2018, 12(4): 909–934

22
Xu S, Yan D. A restriction theorem for oscillatory integral operator with certain polynomial phase. Front Math China, 2017, 12(4): 967–980

23
Yabuta K. Triebel-Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl Math J Chinese Univ Ser B, 2015, 30(4): 418–446

24
Yang M, Fu Z,Sun J. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete Contin Dyn Syst Ser B, 2018, 23(8): 3427–3460

25
Yang M, Fu Z, Sun J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J Differential Equations,https://doi.org/10.1016/j.jde.2018.10.050

DOI

26
Zhang C, Chen J. Boundedness of g-functions on Triebel-Lizorkin spaces. Taiwanese J Math, 2009, 13(3): 973{981

27
Zhang C, Chen J. Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces. Appl Math J Chinese Univ Ser B, 2010, 25(1): 48–54

Outlines

/