Frontiers of Mathematics in China >
Torsion pairs in recollements of abelian categories
Received date: 11 Jan 2018
Accepted date: 11 Jul 2018
Published date: 14 Aug 2018
Copyright
For a recollement (A ;ℬ; C ) of abelian categories, we show that torsion pairs in A and C can induce torsion pairs in ℬ; and the converse holds true under certain conditions.
Key words: Torsion pairs; recollements; abelian categories
Xin MA , Zhaoyong HUANG . Torsion pairs in recollements of abelian categories[J]. Frontiers of Mathematics in China, 2018 , 13(4) : 875 -892 . DOI: 10.1007/s11464-018-0712-1
1 |
Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1997
|
2 |
Beĭlinson A A, Bernstein J, Deligne P. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5{171
|
3 |
Beligiannis A, Reiten I. Homological and Homotopical Aspects of Torsion Theories. Mem Amer Math Soc, Vol 188, No 883. Providence: Amer Math Soc, 2007
|
4 |
Chen J M. Cotorsion pairs in a recollement of triangulated categories. Comm Algebra, 2013, 41: 2903–2915
|
5 |
Cline E,Parshall B, Scott L. Derived categories and Morita theory. J Algebra, 1986, 104: 397–409
|
6 |
Cline E, Parshall B, Scott L. Finite-dimensional algebras and highest weight categories. J Reine Angew Math, 1988, 391: 85–99
|
7 |
Dickson S E. A torsion theory for Abelian categories. Trans Amer Math Soc, 1966, 121: 223–235
|
8 |
Franjou V, Pirashvili T. Comparison of abelian categories recollements. Doc Math, 2004, 9: 41–56
|
9 |
Gentle R. T.T.F. theories in abelian categories. Comm Algebra, 1988, 16: 877–908
|
10 |
Happel D, Reiten I, Smalø S O. Tilting in Abelian Categories and Quasitilted Algebras. Mem Amer Math Soc, Vol 120, No 575. Providence: Amer Math Soc, 1996
|
11 |
Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172: 117–168
|
12 |
Jans J P. Some aspects of torsion. Pacific J Math, 1965, 15: 1249–1259
|
13 |
Juteau D. Decomposition numbers for perverse sheaves. Ann Inst Fourier (Grenoble), 2009, 59: 1177–1229
|
14 |
Kuhn N J. Generic representations of the finite general linear groups and the Steenrod algebra II. K-Theory, 1994, 8: 395–428
|
15 |
Kuhn N J. A stratification of generic representation theory and generalized Schur algebras. K-Theory, 2002, 26: 15–49
|
16 |
Lin Y N, Wang M X.From recollement of triangulated categories to recollement of abelian categories. Sci China Math, 2010, 53: 1111–1116
|
17 |
Lin Z Q, Wang M X. Koenig's theorem for recollements of module categories. Acta Math Sinica (Chin Ser), 2011, 54: 461–466 (in Chinese)
|
18 |
Liu Q H, Vitória J, Yang D. Gluing silting objects. Nagoya Math J, 2014, 216: 117–151
|
19 |
Pirashvili T I. Polynomial functors. Trudy Tbiliss Mat Inst Razmadze Akad Nauk Gruzin SSR, 1988, 91: 55–66
|
20 |
Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110
|
21 |
Psaroudakis C, Skartsæterhagen Ø, SolbergØ. Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements. Trans Amer Math Soc (Ser B), 2014, 1: 45–95
|
22 |
Psaroudakis C, Vitória J. Recollements of module categories. Appl Categ Structures, 2014, 22: 579–593
|
/
〈 | 〉 |