RESEARCH ARTICLE

Error bounds of Lanczos approach for trust-region subproblem

  • Leihong ZHANG , 1,2 ,
  • Weihong YANG 3 ,
  • Chungen SHEN 4 ,
  • Jiang FENG 1
Expand
  • 1. School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China
  • 2. Shanghai Key Laboratory of Financial Information Technology, Shanghai University of Finance and Economics, Shanghai 200433, China
  • 3. School of Mathematical Sciences, Fudan University, Shanghai 200433, China
  • 4. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

Received date: 06 Jan 2016

Accepted date: 06 Feb 2018

Published date: 28 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Because of its vital role of the trust-region subproblem (TRS) in various applications, for example, in optimization and in ill-posed problems, there are several factorization-free algorithms for solving the large-scale sparse TRS. The truncated Lanczos approach proposed by N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint [SIAM J. Optim., 1999, 9: 504–525] is a natural extension of the classical Lanczos method for the symmetric linear system and eigenvalue problem and, indeed follows the classical Rayleigh-Ritz procedure for eigenvalue computations. It consists of 1) projecting the original TRS to the Krylov subspaces to yield smaller size TRS’s and then 2) solving the resulted TRS’s to get the approximates of the original TRS. This paper presents a posterior error bounds for both the global optimal value and the optimal solution between the original TRS and their projected counterparts. Our error bounds mainly rely on the factors from the Lanczos process as well as the data of the original TRS and, could be helpful in designing certain stopping criteria for the truncated Lanczos approach.

Cite this article

Leihong ZHANG , Weihong YANG , Chungen SHEN , Jiang FENG . Error bounds of Lanczos approach for trust-region subproblem[J]. Frontiers of Mathematics in China, 2018 , 13(2) : 459 -481 . DOI: 10.1007/s11464-018-0687-y

1
Conn A R, Gould N I M, Toint P L. Trust-Region Methods. Philadelphia: SIAM, 2000

DOI

2
Demmel J. Applied Numerical Linear Algebra. Philadelphia: SIAM, 1997

DOI

3
Gay D M. Computing optimal locally constrained steps. SIAM J Sci Statist Comput, 1981, 2: 186–197

DOI

4
Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins University Press, 1996

5
Golub G H, von Matt U. Quadratically constrained least squares and quadratic problems. Numer Math, 1991, 59: 561–580

DOI

6
Gould N I M, Lucidi S, Roma M, Toint P L. Solving the trust-region subproblem using the Lanczos method. SIAM J Optim, 1999, 9: 504–525

DOI

7
Hager W W. Minimizing a quadratic over a sphere. SIAM J Optim, 2001, 12: 188–208

DOI

8
Hager W W, Krylyuk Y. Graph partitioning and continuous quadratic programming. SIAM J Discrete Math, 1999, 12(4): 500–523

DOI

9
Li C K, Li R C. A note on eigenvalues of perturbed Hermitian matrices. Linear Algebra Appl, 2005, 395: 183–190

DOI

10
Li R C. On Meinardus’ examples for the conjugate gradient method. Math Comp, 2008, 77(261): 335–352

DOI

11
Li R C. Sharpness in rates of convergence for symmetric Lanczos method. Math Comp, 2010, 79(269): 419–435

DOI

12
Li R C, Zhang L H. Convergence of block Lanczos method for eigenvalue clusters. Numer Math, 2015, 131: 83–113

DOI

13
Luk˘san L, Matonoha C, Vl˘cek J. On Lagrange multipliers of trust-region subproblems. BIT, 2008, 48: 763–768

DOI

14
Moŕe J, Sorensen D C. Computing a trust region step. SIAM J Sci Statist Comput, 1983, 4(3): 553–572

DOI

15
Nocedal J, Wright S. Numerical Optimization. 2nd ed. Berlin: Springer, 2006

16
Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998

DOI

17
Rendl R, Wolkowicz H. A semidefinite framework for trust region subproblems with applications to large scale minimization. Math Program, 1997, 77(2): 273–299

DOI

18
Rojas M, Santos S A, Sorensen D C. Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization. ACM Trans Math Software, 2008, 34(2): 1–28

DOI

19
Rojas M, Santos S A, Sorensen D C. A new matrix-free algorithm for the large-scale trust-region subproblem. SIAM J Optim, 2000, 11: 611–646

DOI

20
Rojas M, Sorensen D C. A trust-region approach to the regularization of large-scale discrete forms of ill-posed problems. SIAM J Sci Comput, 2002, 23: 1843–1861

DOI

21
Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Philadelphia: SIAM, 2003

DOI

22
Sorensen D C. Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM J Optim, 1997, 7: 141–161

DOI

23
Steihaug T. The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal, 1983, 20: 626–637

DOI

24
Tarantola A. Inverse Problem Theory. Amsterdam: Elsevier, 1987

25
Tikhonov A N. Regularization of incorrectly posed problems. Soviet Math, 1963, 4: 1624–1627

26
Toint P L. Towards an efficient sparsity exploiting Newton method for minimization. In: Duff I, ed. Sparse Matrices and Their Uses. London: Academic Press, 1981, 57–88

27
Zhang L H, Shen C G, Li R C. On the generalized Lanczos trust-region method. SIAM J Optim, 2017, 27(3): 2110–2142

DOI

Outlines

/