RESEARCH ARTICLE

An isometrical CPn-theorem

  • Xiaole SU 1 ,
  • Hongwei SUN 2 ,
  • Yusheng WANG , 1
Expand
  • 1. School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China
  • 2. School of Mathematical Sciences, Capital Normal University, Beijing 100037, China

Received date: 17 Jan 2018

Accepted date: 24 Jan 2018

Published date: 28 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let Mn(n3) be a complete Riemannian manifold with secM1, and let Mini(i=1,2) be two complete totally geodesic submanifolds in M. We prove that if n1 + n2 = n − 2 and if the distance |M1M2|π/2, then Mi is isometric to Sni/h,Pni/2/2, or Pni/2/2 with the canonical metric when ni>0, and thus, M is isometric to Sn/h,Pn/2, or Pn/2/2 except possibly when n = 3 and M1 (or M2) isoS1/h with h2 or n = 4 and M1 (or M2) isoP2.

Cite this article

Xiaole SU , Hongwei SUN , Yusheng WANG . An isometrical CPn-theorem[J]. Frontiers of Mathematics in China, 2018 , 13(2) : 367 -398 . DOI: 10.1007/s11464-018-0684-1

1
Besse A L. Manifolds all of whose Geodesics are Closed. Ergeb Math Grenzgeb, Vol 93. Berlin: Springer, 1978

DOI

2
Burago Y, Gromov M, Perel' man G. A. D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47(2): 3–51

3
Cheeger J, Ebin D G. Comparison Theorems in Riemannian Geometry. North-Holland Math Library, Vol 9. Amsterdam: North-Holland Publishing Company, 1975

4
Frankel T. Manifolds of positive curvature. Pacific J Math, 1961, 11: 165–174

DOI

5
Gromoll D, Grove K. A generalization of Berger’s rigidity theorem for positively curved manifolds. Ann Sci Éc Norm Supér, 1987, 20(2): 227–239

DOI

6
Gromoll D, Grove K. The low-dimensional metric foliations of Euclidean spheres. J Differential Geom, 1988, 28: 143–156

DOI

7
Grove K, Markvorsen S. New extremal problems for the Riemannian recognition program via Alexandrov geometry. J Amer Math Soc, 1995, 8(1): 1–28

DOI

8
Grove K, Shiohama K. A generalized sphere theorem. Ann of Math, 1977, 106: 201–211

DOI

9
Peterson P. Riemannian Geometry. Grad Texts in Math, Vol 171. Berlin: Springer-Verlag, 1998

DOI

10
Rong X C, Wang Y S. Finite quotient of join in Alexandrov geometry. ArXiv: 1609.07747v1

11
Sady R H.Free involutions on complex projective spaces. Michigan Math J, 1977, 24: 51–64

DOI

12
Su X L, Sun H W, Wang Y S. Generalized packing radius theorems of Alexandrov spaces with curvature≥1. Commun Contemp Math, 2017, 19(3): 1650049 (18 pp)

13
Sun Z Y, Wang Y S. On the radius of locally convex subsets in Alexandrov spaces with curvature≥1 and radius>π/2. Front Math China, 2014, 9(2): 417–423

DOI

14
Wilhelm F. The radius rigidity theorem for manifolds of positive curvature. J Differential Geom, 1996, 44: 634–665

DOI

15
Wilking B. Index parity of closed geodesics and rigidity of Hopf fibrations. Invent Math, 2001, 144: 281–295

DOI

16
Wilking B. Torus actions on manifolds of positive sectional curvature. Acta Math, 2003, 191: 259–297

DOI

17
Yamaguchi T. Collapsing 4-manifolds under a lower curvature bound. arXiv: 1205.0323

Outlines

/