RESEARCH ARTICLE

Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises

  • Suxin WANG 1 ,
  • Yiming JIANG , 2
Expand
  • 1. College of Sciences, Civil Aviation University of China, Tianjin 300300, China
  • 2. School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received date: 11 May 2016

Accepted date: 16 Sep 2017

Published date: 12 Jan 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We study a strongly elliptic partial differential operator with timevarying coefficient in a parabolic diagonalizable stochastic equation driven by fractional noises. Based on the existence and uniqueness of the solution, we then obtain a kernel estimator of time-varying coefficient and the convergence rates. An example is given to illustrate the theorem.

Cite this article

Suxin WANG , Yiming JIANG . Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises[J]. Frontiers of Mathematics in China, 2018 , 13(1) : 187 -201 . DOI: 10.1007/s11464-017-0665-9

1
Bally V, Pardoux E. Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal, 1994, 9: 27–64

DOI

2
Bo L, Jiang Y, Wang Y. On a class of stochastic Anderson models with fractional noises. Stoch Anal Appl, 2008, 26(2): 270–287

DOI

3
Bo L, Jiang Y,Wang Y. Stochastic Cahn-Hilliard equation with fractional noises. Stoch Dyn, 2008, 8(4): 643–665

DOI

4
De S. Stochastic models of population growth and spread. Bull Math Biol, 1987, 49: 1–11

DOI

5
Hu Y. Heat equation with fractional white noise potentials. Appl Math Optim, 2001, 43: 221–243

DOI

6
Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist Probab Lett, 2010, 80: 1030–1038

DOI

7
Huebner M, Lototsky S. Asymptotic analysis of a kernel estimator for parabolic SPDE’s with time-dependent coefficients. Ann Appl Probab, 2000, 10(4): 1246–1258

8
Huebner M, Lototsky S, Rozovskii B L. Asymptotic properties of an approximate maximum likelihood estimator for stochastic PDEs. In: Statistics and Control of Stochastic Processes: In honour of R. Sh. Liptser. Singapore: World Scientific, 1998, 139–155

9
Huebner M, Rozovskii B. On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE’s. Probab Theory Related Fields, 1995, 103: 143–163

DOI

10
Jiang Y, Shi K, Wang Y. Large deviation principle for the fourth-order stochastic heat equations with fractional noises. Acta Math Sin (Engl Ser), 2010, 26: 89–106

DOI

11
Jiang Y, Wei T, Zhou X. Stochastic generalized Burgers equations driven by fractional noises. J Differential Equations, 2012, 252(2): 1934–1961

DOI

12
Mann Jr J A,Woyczynski WA. Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys A, 2001, 291: 159–183

DOI

13
Nualart D. The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006

14
Nualart D, Ouknine Y. Regularization of quasilinear heat equations by a fractional noise. Stoch Dyn, 2004, 4(2): 201–221

DOI

15
Prakasa Rao B L S. Parametric estimation for linear stochastic differential equations driven by fractional Brownian motion. Random Oper Stoch Equ, 2003, 11: 229–242

DOI

16
Prakasa Rao B L S. Berry-Esseen bound for MLE for linear stochastic differential equations driven by fractional Brownian motion. J Korean Statist Soc, 2005, 34: 281–295

17
Reed M, Simon B. Methods of modern mathematical physics. New York: Academic Press, Inc, 1980

18
Safarov Y, Vassiliev D. The Asymptotic Distribution of Eigenvalues of Partial Differential Operators. Transl Math Monogr, Vol 155. Providence: Amer Math Soc, 1997

19
Tindel S, Tudor C A, Viens F. Stochastic evolution equations with fractional Brownian motion. Probab Theory Related Fields, 2003, 127: 186–204

DOI

Outlines

/