RESEARCH ARTICLE

Density functions of doubly-perturbed stochastic differential equations with jumps

  • Yulin SONG
Expand
  • Department of Mathematics, Nanjing University, Nanjing 210093, China

Received date: 14 Jul 2017

Accepted date: 15 Aug 2017

Published date: 12 Jan 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We consider a real-valued doubly-perturbed stochastic differential equation driven by a subordinated Brownian motion. By using classic Malliavin calculus, we prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure on .

Cite this article

Yulin SONG . Density functions of doubly-perturbed stochastic differential equations with jumps[J]. Frontiers of Mathematics in China, 2018 , 13(1) : 161 -172 . DOI: 10.1007/s11464-017-0659-7

1
Chaumont L, Doney R A. Some calculations for doubly-perturbed Brownian motion. Stochastic Process Appl, 2000, 85: 61–74

2
Davis B.Weak limits of perturbed random walks and the equation Yt= Bt+ αsups≤t Ys+βinfs≤tYs: Ann Probab, 1996, 24: 2007–2023

3
Davis B. Brownian motion and random walk perturbed at extrema. Probab Theory Related Fields, 1999, 113: 501–518

4
Doney R A. Some calculations for perturbed Brownian motion. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXII. Lecture Notes in Math, Vol 1686. Berlin: Springer, 1998, 231–236

DOI

5
Doney R A,Zhang T S.Perturbed Skorohod equation and perturbed reflected diffusion processes. Ann Inst Henri Poincaré Probab Stat, 2005, 41: 107–121

6
Kusuoka S. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J Math, 2009, 50: 491–520

7
Le Gall J F, Yor M. Excursions browniennes et carrés de processus de Bessel. C R Acad Sci Sr 1, Math, 1986, 303: 73–76

8
Luo J.W .Doubly perturbed jump-diffusion processes. J Math Anal Appl, 2009, 351: 147–151

9
Nualart D. The Malliavin Calculus and Related Topics. New York: Springer-Verlag, 2006

10
Perman M, Werner W. Perturbed Brownian motion. Probab Theory Related Fields, 1997, 108: 357–383

11
Sato K. Lévy Processes and Innitely Divisible Distributions. Cambridge: Cambridge Univ Press, 1999

12
Werner W. Some remarks on perturbed Brownian motion. In: Azéma J, Emery M, Meyer P A, Yor M, eds. Séminaire de Probabilités XXIX. Lecture Notes in Math, Vol 1613. Berlin: Springer, 1995, 37–43

13
Yue W, Zhang T S. Absolutely continuous of the laws of perturbed diffusion processes and perturbed reflected diffusion processes. J Theoret Probab, 2015, 28: 587–618

14
Zhang X C. Densities for SDEs driven by degenerated α-stable processes. Ann Probab, 2014, 42: 1885–1910

Outlines

/