RESEARCH ARTICLE

Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces

  • Nguyen Minh CHUONG 1 ,
  • Nguyen Thi HONG 2 ,
  • Ha Duy HUNG , 3
Expand
  • 1. Institute of Mathematics, Vietnamese Academy of Science and Technology, Hanoi, Vietnam
  • 2. Hanoi Metropolitan University, 98 Duong Quang Ham, Hanoi, Vietnam
  • 3. Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Received date: 19 Jun 2017

Accepted date: 01 Nov 2017

Published date: 12 Jan 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We introduce the p-adic weighted multilinear Hardy-Cesàro operator. We also obtain the necessary and sufficient conditions on weight functions to ensure the boundedness of that operator on the product of Lebesgue spaces, Morrey spaces, and central bounded mean oscillation spaces. In each case, we obtain the corresponding operator norms. We also characterize the good weights for the boundedness of the commutator of weighted multilinear Hardy-Cesàro operator on the product of central Morrey spaces with symbols in central bounded mean oscillation spaces.

Cite this article

Nguyen Minh CHUONG , Nguyen Thi HONG , Ha Duy HUNG . Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces[J]. Frontiers of Mathematics in China, 2018 , 13(1) : 1 -24 . DOI: 10.1007/s11464-017-0677-5

1
Albeverio S, Khrennikov A Yu, Shelkovich V M. Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems. J Fourier Anal Appl, 2006, 12: 393–425

DOI

2
Alvarez J, Lakey J, Guzmán-Partida M. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 51: 1–47

3
Chen Y Z, Lau K S, Some new classes of Hardy spaces. J Funct Anal, 1989, 84: 255–278

DOI

4
Chuong N M, Egorov Yu V, Khrennikov A, Meyer Y, Mumford D. Harmonic, Wavelet and p-Adic Analysis.Singapore: World Scientific, 2007

DOI

5
Chuong N M, Hong N T, Hung H D. Bounds of p-adic Hardy-Cesàro operators and their commutators on p-adic weighted spaces of Morrey types. P-Adic Numbers Ultrametric Anal Appl, 2016, 8: 31–44

DOI

6
Chuong N M, Hong N T, Hung H D. Multilinear Hardy-Cesàro operator and commutator on the product of Morrey-Herz spaces. Anal Math (to appear)

DOI

7
Chuong N M, Hung H D. Maximal functions and weighted norm inequalities on Local Fields. Appl Comput Harmon Anal, 2010, 29: 272–286

DOI

8
Chuong N M, Hung H D. A Muckenhoupt’s weight problem and vector valued maximal inequalities over local fields. P-Adic Numbers Ultrametric Anal Appl, 2010, 2: 305–321

DOI

9
Chuong N M, Hung H D. Bounds of weighted Hardy-Cesàro operators on weighted Lebesgue and BMO spaces. Integral Transforms Spec Funct, 2014, 25(9): 697–710

DOI

10
Coifman R R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math (2), 1976, 103: 611–635

11
Fu Z W, Gong S L, Lu S Z, Yuan W. Weighted multilinear Hardy operators and commutators. Forum Math. 2014, DOI: https://doi.org/10.1515/forum-2013-0064

DOI

12
Fu Z W, Liu Z G, Lu S Z. Commutators of weighted Hardy operators on Rn.Proc Amer Math Soc, 2009, 137(10): 3319–3328

DOI

13
Hung H D. p-Adic weighted Hardy-Cesàro operator and an application to discrete Hardy inequalities. J Math Anal Appl, 2014, 409: 868–879

DOI

14
Hung H D, Ky L D. New weighted multilinear operators and commutators of Hardy-Cesàro type. Acta Math Sci Ser B Engl Ed, 2015, 35: 1411–1425

DOI

15
Igusa J. Introduction to the Theory of Local Zeta Functions. Stud Adv Math, Vol 14. Boca Raton: Chapman & Hall/CRC, 2000

16
Khrennikov A Yu. p-Adic Valued Distributions in Mathematical Physics.Dordrecht-Boston-London: Kluwer Academic Publishers, 1994

17
Khrennikov A Yu. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems, and Biological Models.Dordretch/Boston/London: Kluwer Academic Publishers, 1997

DOI

18
Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231

DOI

19
Kozyrev S V. Wavelet analysis as a p-adic spectral analysis. Izv Ross Akad Nauk Ser Mat, 2002, 66(2): 149–158

20
Kozyrev S V, Khrennikov A Yu. Pseudodifferential operators on ultrametric spaces and ultrametric wavelets. Izv Ross Akad Nauk Ser Mat, 2005, 69(5): 133–148

DOI

21
Lu S Z, Yang D C. The central BMO spaces and Littlewood-Paley operators. Approx Theory Appl, 1995, 11: 72–94

22
Rim K S, Lee J. Estimates of weighted Hardy-Littlewood averages on the p-adic vector space. J Math Anal Appl, 2006, 324: 1470–1477

DOI

23
Taibleson M. Fourier Analysis on Local Fields.Princeton: Princeton Univ Press, 1975

24
Vladimirov V S, Volovich I V, Zelenov E I. p-Adic Analysis and Mathematical Physics.Singapore: World Scientific, 1994

25
Volosivets S S. Hausdorff operator of special kind on p-adic field and BMO-type spaces. P-Adic Numbers Ultrametric Anal Appl, 2011, 3: 149–156

DOI

26
Volosivets S S. Hausdorff operator of special kind in Morrey and Herz p-adic spaces. P-Adic Numbers Ultrametric Anal Appl, 2012, 4: 222–230

DOI

27
Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40: 635–654

DOI

28
Wu Q Y, Mi L, Fu Z W. Boundedness for commutators of fractional p-adic Hardy operators. J Inequal Appl, 2012, 2012: 293

29
Wu Q Y, Mi L, Fu Z W. Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces. J Funct Spaces Appl, 2013, 2013: 359193

Outlines

/