Frontiers of Mathematics in China >
Finite groups with permutable Hall subgroups
Received date: 27 Dec 2016
Accepted date: 27 Mar 2017
Published date: 30 Sep 2017
Copyright
Let be a partition of the set of all primes , and let G be a finite group. A set of subgroups of G is said to be a complete Hall-set of G if every member of is a Hall σi-subgroup of G for somei ∈ I and contains exactly one Hall σi-subgroup of G for every i such that . In this paper, we study the structure of G under the assuming that some subgroups of G permutes with all members of .
Xia YIN , Nanying YANG . Finite groups with permutable Hall subgroups[J]. Frontiers of Mathematics in China, 2017 , 12(5) : 1265 -1275 . DOI: 10.1007/s11464-017-0641-4
1 |
AsaadM, HelielA A. On permutable subgroups of finite groups. Arch Math, 2003, 80(2): 113–118
|
2 |
Ballester-BolinchesA, Esteban-RomeroR, AsaadM. Products of Finite Groups. Berlin: Walter de Gruyter, 2010
|
3 |
DoerkK, HawkesT. Finite Soluble Groups. Berlin: Walter de Gruyter, 1992
|
4 |
GorensteinD. Finite Groups. New York: Harper & Row Publishers, 1968
|
5 |
GriessR, SchmidP. The Frattini module. Arch Math, 1978, 30(1): 256–266
|
6 |
GuoW. The Theory of Classes of Groups. Beijing/Dordrecht: Science Press/Kluwer Academic Publishers, 2000
|
7 |
GuoW, SkibaA N. On Π-quasinormal subgroups of finite groups. Monatsh Math,
|
8 |
HuppertB. Zur Sylowstruktur aufl¨osbarer gruppen. Arch Math, 1961, 12: 161–169
|
9 |
HuppertB. Zur Sylowstruktur auflösbarer gruppen, II.Arch Math, 1964, 15: 251–257
|
10 |
HuppertB. Endliche Gruppen I. Berlin: Springer-Verlag, 1967
|
11 |
HuppertB, BlackburnN. Finite Groups III. Berlin: Springer-Verlag, 1982
|
12 |
KnyaginaB N, MonakhovV S. On π'-properties of finite groups possessing a Hall π-subgroup. Sib Math J, 2011, 52(2): 297–309
|
13 |
SkibaA N. On the F-hypercentre and the intersection of all F-maximal subgroups of a finite group. J Pure Appl Algebra, 2012, 216(4): 789–799
|
14 |
SkibaA N. On σ-subnormal and σ-permutable subgroups of finite groups. J Algebra, 2015, 436: 1–16
|
15 |
SkibaA N. On some results in the theory of finite partially soluble groups. Commun Math Stat,2016, 4(3): 281–309
|
16 |
SkibaA N. A generalization of a Hall theorem. J Algebra Appl, 2016, 15(4): 1650085 (13 pp).
|
17 |
TyutyanovV N. On the Hall conjecture. Ukra¨ın Mat Zh, 2002, 54(7): 981–990 (in Russian)
|
/
〈 | 〉 |