RESEARCH ARTICLE

Finite groups with permutable Hall subgroups

  • Xia YIN ,
  • Nanying YANG
Expand
  • School of Science, Jiangnan University, Wuxi 214122, China

Received date: 27 Dec 2016

Accepted date: 27 Mar 2017

Published date: 30 Sep 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

Let σ={σi|iI} be a partition of the set of all primes P, and let G be a finite group. A set H of subgroups of G is said to be a complete Hallσ-set of G if every member 1 of H is a Hall σi-subgroup of G for somei ∈ I and H contains exactly one Hall σi-subgroup of G for every i such that σiπ(G)φ. In this paper, we study the structure of G under the assuming that some subgroups of G permutes with all members of H .

Cite this article

Xia YIN , Nanying YANG . Finite groups with permutable Hall subgroups[J]. Frontiers of Mathematics in China, 2017 , 12(5) : 1265 -1275 . DOI: 10.1007/s11464-017-0641-4

1
AsaadM, HelielA A. On permutable subgroups of finite groups. Arch Math, 2003, 80(2): 113–118

DOI

2
Ballester-BolinchesA, Esteban-RomeroR, AsaadM. Products of Finite Groups. Berlin: Walter de Gruyter, 2010

DOI

3
DoerkK, HawkesT. Finite Soluble Groups. Berlin: Walter de Gruyter, 1992

DOI

4
GorensteinD. Finite Groups. New York: Harper & Row Publishers, 1968

5
GriessR, SchmidP. The Frattini module. Arch Math, 1978, 30(1): 256–266

DOI

6
GuoW. The Theory of Classes of Groups. Beijing/Dordrecht: Science Press/Kluwer Academic Publishers, 2000

7
GuoW, SkibaA N. On Π-quasinormal subgroups of finite groups. Monatsh Math,

DOI

8
HuppertB. Zur Sylowstruktur aufl¨osbarer gruppen. Arch Math, 1961, 12: 161–169

DOI

9
HuppertB. Zur Sylowstruktur auflösbarer gruppen, II.Arch Math, 1964, 15: 251–257

DOI

10
HuppertB. Endliche Gruppen I. Berlin: Springer-Verlag, 1967

DOI

11
HuppertB, BlackburnN. Finite Groups III. Berlin: Springer-Verlag, 1982

DOI

12
KnyaginaB N, MonakhovV S. On π'-properties of finite groups possessing a Hall π-subgroup. Sib Math J, 2011, 52(2): 297–309

DOI

13
SkibaA N. On the F-hypercentre and the intersection of all F-maximal subgroups of a finite group. J Pure Appl Algebra, 2012, 216(4): 789–799

DOI

14
SkibaA N. On σ-subnormal and σ-permutable subgroups of finite groups. J Algebra, 2015, 436: 1–16

DOI

15
SkibaA N. On some results in the theory of finite partially soluble groups. Commun Math Stat,2016, 4(3): 281–309

DOI

16
SkibaA N. A generalization of a Hall theorem. J Algebra Appl, 2016, 15(4): 1650085 (13 pp).

17
TyutyanovV N. On the Hall conjecture. Ukra¨ın Mat Zh, 2002, 54(7): 981–990 (in Russian)

Outlines

/