RESEARCH ARTICLE

Generating series of intersection numbers on Hilbert schemes of points

  • Zhilan WANG , 1 ,
  • Jian ZHOU 2
Expand
  • 1. Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
  • 2. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received date: 08 Jul 2016

Accepted date: 07 Apr 2017

Published date: 30 Sep 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

We compute some generating series of integrals related to tautological bundles on Hilbert schemes of points on surfaces S[n], including the intersection numbers of two Chern classes of tautological bundles, and the Euler characteristics of Λ_yTS[n]. We also propose some related conjectures, including an equivariant version of Lehn’s conjecture.

Cite this article

Zhilan WANG , Jian ZHOU . Generating series of intersection numbers on Hilbert schemes of points[J]. Frontiers of Mathematics in China, 2017 , 12(5) : 1247 -1264 . DOI: 10.1007/s11464-017-0686-4

1
AtiyahM F, BottR. The moment map and equivariant cohomology. Topology, 1984, 23(1): 1–28

DOI

2
BorisovL, LibgoberA. McKay correspondence for elliptic genera. Ann of Math, 2005, 1521–1569

DOI

3
EllingsrudG, GöttscheL, LehnM. On the cobordism class of the Hilbert scheme of a surface. J Algebraic Geom, 2001, 10: 81–100

4
EllingsrudG, StrømmeS A. On the homology of the Hilbert scheme of points in the plane. Invent Math, 1987, 87(2): 343–352

DOI

5
GöttscheL. The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math Ann, 1990, 286(1): 193–207

DOI

6
GöttscheL, SoergelW. Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math Ann, 1993, 296(1): 235–245

DOI

7
IqbalA, NazirS, RazaZ, SaleemZ. Generalizations of Nekrasov-Okounkov identity. Ann Comb, 2012, 16(4): 745–753

DOI

8
LehnM. Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent Math, 1999, 136(1): 157–207

DOI

9
LiJ, LiuK, ZhouJ. Topological string partition functions as equivariant indices. Asian J Math, 2006, 10(1): 81–114

DOI

10
LiuK, YanC, ZhouJ. Hirzebruch χy genera of the Hilbert schemes of surfaces by localization formula. Sci China Ser A-Math, 2002, 45(4):420–431

DOI

11
MacdonaldI G. Symmetric Functions and Hall Polynomials. Oxford: Oxford Univ Press, 1998

12
MarianA, OpreaD, PandharipandeR. Segre classes and Hilbert schemes of points. arXiv: 1507.00688

13
NakajimaH. Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann of Math, 1997, 145(2): 379–388

DOI

14
NakajimaH. Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series, Vol 18. Providence: Amer Math Soc, 1999

15
SloaneN J. The On-line Encyclopedia of Integer Sequences. https://oeis.org

16
TikhomirovA. Standard bundles on a Hilbert scheme of points on a surface. In: Tikhomirov A, Tyurin A, eds. Algebraic Geometry and its Applications: Proceedings of the 8th Algebraic Geometry Conference, Yaroslavl 1992. Aspects of Mathematics, Vol 25. Wiesbaden: Vieweg+Teubner Verlag, 1994, 183–203

DOI

17
VafaC, WittenE. A strong coupling test of S-duality. Nuclear Phys, 1994, 431(1): 3–77

DOI

18
WangZ. Tautological Sheaves on Hilbert Schemes. Ph D Thesis. Tsinghua University, Beijing, 2014

19
19. Wang Z, Zhou J. Tautological sheaves on Hilbert schemes of points. J Algebraic Geom, 2014, 23(4): 669–692

DOI

Outlines

/