RESEARCH ARTICLE

Finite dimensional characteristic functions of Brownian rough path

  • Xi GENG , 1 ,
  • Zhongmin QIAN 2
Expand
  • 1. Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15217, US
  • 2. Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Received date: 23 Sep 2015

Accepted date: 17 Apr 2017

Published date: 06 Jul 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The Brownian rough path is the canonical lifting of Brownian motion to the free nilpotent Lie group of order 2. Equivalently, it is a process taking values in the algebra of Lie polynomials of degree 2, which is described explicitly by the Brownian motion coupled with its area process. The aim of this article is to compute the finite dimensional characteristic functions of the Brownian rough path in d and obtain an explicit formula for the case when d = 2.

Cite this article

Xi GENG , Zhongmin QIAN . Finite dimensional characteristic functions of Brownian rough path[J]. Frontiers of Mathematics in China, 2017 , 12(4) : 859 -877 . DOI: 10.1007/s11464-017-0648-x

1
FrizP, VictoirN. Multidimensional Stochastic Processes as Rough Paths. Cambridge: Cambridge Univ Press, 2010

DOI

2
GaveauB. Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math, 1977, 139(1): 95–153

DOI

3
HaraK, IkedaN. Quadratic Wiener functionals and dynamics on Grassmannians. Bull Sci Math, 2001, 125(6): 481–528

DOI

4
HelmesK, SchwaneA. Lévy’s stochastic area formula in higher dimensions.J Funct Anal, 1983, 54(2): 177–192

DOI

5
HidaT. Quadratic functionals of Brownian motion. J Multivariate Anal, 1971, 1(1): 58–69

DOI

6
IkedaN, KusuokaS, ManabeS. Lévy’s stochastic area formula for Gaussian processes. Comm Pure Appl Math, 1994, 47(3): 329–360

DOI

7
IkedaN, ManabeS. Asymptotic formulae for stochastic oscillatory integrals. In: Elworthy K D, Ikeda N, eds. Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics. Pitman Res Notes Math Ser, 284. Boston: Pitman, 1993, 136–155

8
LevinD, WildonM. A combinatorial method for calculating the moments of Lévy area. Trans Amer Math Soc, 2008, 360(12): 6695–6709

DOI

9
LevinJ. On the matrix Riccati equation. Proc Amer Math Soc, 1959, 10(4): 519–524

DOI

10
LévyP. Le mouvement brownien plan. Amer J Math, 1940, 62: 487–550

DOI

11
LyonsT. Differential equations driven by rough signals. Rev Mat Iberoam, 1998, 14(2): 215–310

DOI

12
LyonsT, QianZ. System Control and Rough Paths. Oxford: Oxford Univ Press, 2002

DOI

13
ReidW T. A matrix differential equation of Riccati type. Amer J Math, 1946, 68: 237–246

DOI

14
ReidW T. Riccati Differential Equations. New York: Academic Press, 1972

15
SipiläinenE M. A Pathwise View of Solutions of Stochastic Differential Equations. Ph D Thesis. University of Edinburgh, 1993

Outlines

/