RESEARCH ARTICLE

A class of metrics and foliations on tangent bundle of Finsler manifolds

  • Hongchuan XIA , 1 ,
  • Chunping ZHONG 2
Expand
  • 1. College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
  • 2. School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Received date: 24 Jul 2015

Accepted date: 14 Nov 2016

Published date: 20 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let (M,F) be a Finsler manifold, and let TM0 be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TM0,G) and study their geometric properties. Next, we use this approach to obtain new characterizations of Finsler manifolds with positive constant flag curvature. We also investigate the relations between Levi-Civita connection, Cartan connection, Vaisman connection, vertical foliation, and Reinhart spaces.

Cite this article

Hongchuan XIA , Chunping ZHONG . A class of metrics and foliations on tangent bundle of Finsler manifolds[J]. Frontiers of Mathematics in China, 2017 , 12(2) : 417 -439 . DOI: 10.1007/s11464-016-0614-z

1
Alipour-Fakhri Y, Rezaii M M. The warped Sasaki-Matsumoto metric and bundlelike condition. J Math Phys, 2010, 51(12): 122701

DOI

2
Anastasiei M, Shimada H. Deformation of Finsler metrics. In: Antonelli P L, ed. Finslerian Geometries—A meetings of Minds. Dordrecht-Boston-London: Kluwer Academic Publishers, 2000, 53–66

DOI

3
Attarchi H, Rezaii M M. Cartan spaces and natural foliations on the cotangent bundle. Int J Geom Methods Mod Phys, 2013, 10(3): 1250089

DOI

4
Balan V, Manea A. Leafwise 2-jet cohomology on foliated Finsler manifolds. In: Balkan Society of Geometries Proceeding, Vol 16. Bucharest: Geometry Balkan Press, 2009, 28–41

5
Bao D, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry. Grad Texts in Math, Vol 200. New York: Springer-Verlag, 2000

DOI

6
Bejancu A. Tangent bundle and indicatrix bundle of a Finsler manifold. Kodai Math J, 2008, 31: 272–306

DOI

7
Bejancu A, Farran F R. Foliations and Geometric Structures. Dordrecht: Springer, 2006

8
Bejancu A, Farran F R. Finsler geometry and natural foliations on the tangent bundle. Rep Math Phys, 2006, 58: 131–146

DOI

9
Hushmandi A B, Rezaii M M. On warped product Finsler spaces of Landsberg type. J Math Phys, 2011, 52(9): 093506

DOI

10
Hushmandi A B, Rezaii M M. On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics. J Geom Phys, 2012, 62: 2077–2089

DOI

11
Ida C, Adelina M. A vertical Liouville subfoliation on the cotangent bundle of a Cartan space and some related structures. Int J Geom Methods Mod Phys, 2014, 11(6): 1450063

DOI

12
Matsumoto M. Foundations of Finsler Geometry and Special Finsler Spaces. Otsu: Kaiseisha, 1986

13
Miron R. Cartan spaces in a new point of view by considering them as duals of Finsler spaces. Tensor (NS), 1987, 46: 330–334

14
Miron R. The homogeneous lift to the tangent bundle of a Finsler metric. Publ Math Debrecen, 2000, 57: 445–453

15
Peyghan E, Far L N. Foliations and a class of metrics on the tangent bundle. Turkish J Math, 2013, 37: 348–359

16
Peyghan E, Taybei A, Zhong C P. Foliations on the tangent bundle of Finsler manifolds. Sci China Math, 2012, 55(3): 647–662

DOI

17
Taybei A, Peyghan E. On a class of Riemannian metrics arising from Finsler structures. C R Acad Sci Paris Ser I, 2011, 349: 319–322

DOI

18
Vaisman I. Cohomology and Differential Forms. New York: Marcel Dekker Inc, 1973

19
Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific, 1984

Outlines

/