RESEARCH ARTICLE

Fekete-Szegö problem for close-to-convex functions with respect to a certain convex function dependent on a real parameter

  • Nak Eun CHO 1 ,
  • Bogumiła KOWALCZYK 2 ,
  • Adam LECKO , 2
Expand
  • 1. Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea
  • 2. Department of Complex Analysis, University of Warmia and Mazury, ul. Słoneczna 54, 10-710 Olsztyn, Poland

Received date: 23 Nov 2014

Accepted date: 25 Oct 2015

Published date: 18 Oct 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Given α ∈[0, 1], let hα(z) := z/(1 αz), z D := {z C: |z| <1}. An analytic standardly normalized function f in D is called close-to-convex with respect to hα if there exists δ (π/2, π/2) such that Re{eiδzf′(z)/hα(z)} >0, z D. For the class C(hα) of all close-to-convex functions with respect to hα, the Fekete-Szegö problem is studied.

Cite this article

Nak Eun CHO , Bogumiła KOWALCZYK , Adam LECKO . Fekete-Szegö problem for close-to-convex functions with respect to a certain convex function dependent on a real parameter[J]. Frontiers of Mathematics in China, 2016 , 11(6) : 1471 -1500 . DOI: 10.1007/s11464-015-0510-y

1
Abdel-Gawad H R, Thomas D K. A subclass of close-to-convex functions. Publ de L’Inst Math, 1991, 49(63): 61–66

2
Bhowmik B, Ponnusamy S, Wirths K J. On the Fekete-Szegö problem for concave univalent functions. J Math Anal Appl, 2011, 373: 432–438

DOI

3
Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J Lond Math Soc, 1933, 8: 85–89

DOI

4
Goodman A W. Univalent Functions. Tampa: Mariner, 1983

5
Goodman A W, Saff E B. On the definition of close-to-convex function. Int J Math Math Sci, 1978, 1: 125–132

DOI

6
Jakubowski Z J. Sur le maximum de la fonctionnelle |A3 − αA22 | (0≤α<1) dans la famille de fonctions FM.Bull Soc Sci Lett Lódź, 1962, 13(1): 19pp

7
Jameson G J O. Counting zeros of generalized polynomials: Descartes’ rule of signs and Leguerre’s extensions. Math Gazette, 2006, 90(518): 223–234

DOI

8
Kanas S. An unified approach to the Fekete-Szegö problem. Appl Math Comput, 2012, 218: 8453–8461

DOI

9
Kanas S, Lecko A. On the Fekete-Szegö problem and the domain of convexity for a certain class of univalent functions. Folia Sci Univ Tech Resov, 1990, 73: 49–57

10
Kaplan W. Close to convex Schlicht functions. Michigan Math J, 1952, 1: 169–185

DOI

11
Keogh F R, Merkes E P. A coefficient inequality for certain classes of analytic functions. Proc Amer Math Soc, 1969, 20: 8–12

DOI

12
Kim Y C, Choi J H, Sugawa T. Coefficient bounds and convolution properties for certain classes of close-to-convex functions. Proc Japan Acad, 2000, 76: 95–98

DOI

13
Koepf W. On the Fekete-Szegö problem for close-to-convex functions. Proc Amer Math Soc, 1987, 101: 89–95

DOI

14
Kowalczyk B, Lecko A. The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter. J Inequal Appl, 2014, 1.65: 1–16

DOI

15
Kowalczyk B, Lecko A. The Fekete-Szegö problem for close-to-convex functions with respect to the Koebe function. Acta Math Sci Ser B Engl Ed, 2014, 34(5): 1571–1583

DOI

16
Kowalczyk B, Lecko A. Fekete-Szegö problem for a certain subclass of close-to-convex functions. Bull Malays Math Sci Soc, 2015, 38: 1393–1410

DOI

17
Kowalczyk B, Lecko A, Srivastava H M. A note on the Fekete-Szegö problem for closeto-convex functions with respect to convex function. Preprint

18
Laguerre E N. Sur la théeorie des équations numériques. J Math Pures Appl, 1883, 9: 99–146 (Oeuvres de Laguerre, Vol 1, Paris, 1898, 3–47)

19
Lecko A. Some generalization of analytic condition for class of functions convex in a given direction. Folia Sci Univ Tech Resov, 1993, 121(14): 23–34

20
Lecko A. A generalization of analytic condition for convexity in one direction. Demonstratio Math, 1997, XXX(1): 155–170

21
Lecko A, Yaguchi T. A generalization of the condition due to Robertson. Math Japonica, 1998, 47(1): 133–141

22
London R R. Fekete-Szegö inequalities for close-to-convex functions. Proc Amer Math Soc, 1993, 117(4): 947–950

DOI

23
Noshiro K. On the theory of schlicht functions. J Fac Sci Hokkaido Univ Jap, 1934-35, 2: 129–155

24
Ozaki S. On the theory of multivalent functions. Sci Rep Tokyo Bunrika Daig Sect A, 1935, 2: 167–188

25
Pfluger A. The Fekete-Szegö inequality for complex parameter. Complex Variables, 1986, 7: 149–160

DOI

26
Pommerenke Ch. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht, 1975

27
Robertson M S. Analytic functions star-like in one direction. Amer J Math, 1936, 58: 465–472

DOI

28
Srivastava H M, Mishra A K, Das M K. The Fekete-Szegö problem for a subclass of close-to-convex functions. Complex Variables, 2001, 44: 145–163

DOI

29
Turowicz A. Geometria zer wielomianów (Geometry of zeros of polynomials). Warszawa: PWN, 1967 (in Polish)

30
Warschawski S E. On the higher derivatives at the boundary in conformal mapping. Trans Amer Math Soc, 1935, 38(2): 310–340

DOI

Outlines

/